In mathematics, a Sobolev space is a vector space of functions equipped with a norm that is a combination of Lp-norms of the function together with its derivatives up to a given order. The derivatives are understood in a suitable weak sense to make the space complete, i.e. a Banach space. Intuitively, a Sobolev space is a space of functions possessing sufficiently many derivatives for some application domain, such as partial differential equations, and equipped with a norm that measures both the size and regularity of a function.
Sobolev spaces are named after the Russian mathematicianSergei Sobolev. Their importance comes from the fact that weak solutions of some important partial differential equations exist in appropriate Sobolev spaces, even when there are no strong solutions in spaces of continuous functions with the derivatives understood in the classical sense.
Motivation
In this section and throughout the article is an open subset of
There are many criteria for smoothness of mathematical functions. The most basic criterion may be that of continuity. A stronger notion of smoothness is that of differentiability (because functions that are differentiable are also continuous) and a yet stronger notion of smoothness is that the derivative also be continuous (these functions are said to be of class — see Differentiability classes). Differentiable functions are important in many areas, and in particular for differential equations. In the twentieth century, however, it was observed that the space (or , etc.) was not exactly the right space to study solutions of differential equations. The Sobolev spaces are the modern replacement for these spaces in which to look for solutions of partial differential equations.
Quantities or properties of the underlying model of the differential equation are usually expressed in terms of integral norms. A typical example is measuring the energy of a temperature or velocity distribution by an -norm. It is therefore important to develop a tool for differentiating Lebesgue space functions.
where is a multi-index of order and we are using the notation:
The left-hand side of this equation still makes sense if we only assume to be locally integrable. If there exists a locally integrable function , such that
then we call the weak -th partial derivative of . If there exists a weak -th partial derivative of , then it is uniquely defined almost everywhere, and thus it is uniquely determined as an element of a Lebesgue space. On the other hand, if , then the classical and the weak derivative coincide. Thus, if is a weak -th partial derivative of , we may denote it by .
For example, the function
is not continuous at zero, and not differentiable at −1, 0, or 1. Yet the function
satisfies the definition for being the weak derivative of which then qualifies as being in the Sobolev space (for any allowed , see definition below).
The Sobolev spaces combine the concepts of weak differentiability and Lebesgue norms.
Sobolev spaces with integer k
One-dimensional case
In the one-dimensional case the Sobolev space for is defined as the subset of functions in such that and its weak derivatives up to order have a finite Lp norm. As mentioned above, some care must be taken to define derivatives in the proper sense. In the one-dimensional problem it is enough to assume that the -th derivative is differentiable almost everywhere and is equal almost everywhere to the Lebesgue integral of its derivative (this excludes irrelevant examples such as Cantor's function).
With this definition, the Sobolev spaces admit a natural norm,
One can extend this to the case , with the norm then defined using the essential supremum by
Equipped with the norm becomes a Banach space. It turns out that it is enough to take only the first and last in the sequence, i.e., the norm defined by
is equivalent to the norm above (i.e. the induced topologies of the norms are the same).
The case p = 2
Sobolev spaces with p = 2 are especially important because of their connection with Fourier series and because they form a Hilbert space. A special notation has arisen to cover this case, since the space is a Hilbert space:
The space can be defined naturally in terms of Fourier series whose coefficients decay sufficiently rapidly, namely,
where is the Fourier series of and denotes the 1-torus. As above, one can use the equivalent norm
Both representations follow easily from Parseval's theorem and the fact that differentiation is equivalent to multiplying the Fourier coefficient by .
Furthermore, the space admits an inner product, like the space In fact, the inner product is defined in terms of the inner product:
The space becomes a Hilbert space with this inner product.
Other examples
In one dimension, some other Sobolev spaces permit a simpler description. For example, is the space of absolutely continuous functions on (0, 1) (or rather, equivalence classes of functions that are equal almost everywhere to such), while is the space of bounded Lipschitz functions on I, for every interval I. However, these properties are lost or not as simple for functions of more than one variable.
All spaces are (normed) algebras, i.e. the product of two elements is once again a function of this Sobolev space, which is not the case for (E.g., functions behaving like |x|−1/3 at the origin are in but the product of two such functions is not in ).
Multidimensional case
The transition to multiple dimensions brings more difficulties, starting from the very definition. The requirement that be the integral of does not generalize, and the simplest solution is to consider derivatives in the sense of distribution theory.
A formal definition now follows. Let The Sobolev space is defined to be the set of all functions on such that for every multi-index with the mixed partial derivative
The natural number is called the order of the Sobolev space
There are several choices for a norm for The following two are common and are equivalent in the sense of equivalence of norms:
and
With respect to either of these norms, is a Banach space. For is also a separable space. It is conventional to denote by for it is a Hilbert space with the norm .[1]
Approximation by smooth functions
It is rather hard to work with Sobolev spaces relying only on their definition. It is therefore interesting to know that by the Meyers–Serrin theorem a function can be approximated by smooth functions. This fact often allows us to translate properties of smooth functions to Sobolev functions. If is finite and is open, then there exists for any an approximating sequence of functions such that:
If has Lipschitz boundary, we may even assume that the are the restriction of smooth functions with compact support on all of [2]
Examples
In higher dimensions, it is no longer true that, for example, contains only continuous functions. For example, where is the unit ball in three dimensions. For , the space will contain only continuous functions, but for which this is already true depends both on and on the dimension. For example, as can be easily checked using spherical polar coordinates for the function defined on the n-dimensional unit ball we have:
Intuitively, the blow-up of f at 0 "counts for less" when n is large since the unit ball has "more outside and less inside" in higher dimensions.
Absolutely continuous on lines (ACL) characterization of Sobolev functions
Let If a function is in then, possibly after modifying the function on a set of measure zero, the restriction to almost every line parallel to the coordinate directions in is absolutely continuous; what's more, the classical derivative along the lines that are parallel to the coordinate directions are in Conversely, if the restriction of to almost every line parallel to the coordinate directions is absolutely continuous, then the pointwise gradient exists almost everywhere, and is in provided In particular, in this case the weak partial derivatives of and pointwise partial derivatives of agree almost everywhere. The ACL characterization of the Sobolev spaces was established by Otto M. Nikodym (1933); see (Maz'ya 2011, §1.1.3).
A stronger result holds when A function in is, after modifying on a set of measure zero, Hölder continuous of exponent by Morrey's inequality. In particular, if and has Lipschitz boundary, then the function is Lipschitz continuous.
The Sobolev space is also denoted by It is a Hilbert space, with an important subspace defined to be the closure of the infinitely differentiable functions compactly supported in in The Sobolev norm defined above reduces here to
When has a regular boundary, can be described as the space of functions in that vanish at the boundary, in the sense of traces (see below). When if is a bounded interval, then consists of continuous functions on of the form
where the generalized derivative is in and has 0 integral, so that
When is bounded, the Poincaré inequality states that there is a constant such that:
Sobolev spaces are often considered when investigating partial differential equations. It is essential to consider boundary values of Sobolev functions. If , those boundary values are described by the restriction However, it is not clear how to describe values at the boundary for as the n-dimensional measure of the boundary is zero. The following theorem[2] resolves the problem:
Trace theorem — Assume Ω is bounded with Lipschitz boundary. Then there exists a bounded linear operator such that
Tu is called the trace of u. Roughly speaking, this theorem extends the restriction operator to the Sobolev space for well-behaved Ω. Note that the trace operatorT is in general not surjective, but for 1 < p < ∞ it maps continuously onto the Sobolev–Slobodeckij space
Intuitively, taking the trace costs 1/p of a derivative. The functions u in W1,p(Ω) with zero trace, i.e. Tu = 0, can be characterized by the equality
where
In other words, for Ω bounded with Lipschitz boundary, trace-zero functions in can be approximated by smooth functions with compact support.
Sobolev spaces with non-integer k
Bessel potential spaces
For a natural number k and 1 < p < ∞ one can show (by using Fourier multipliers[3][4]) that the space can equivalently be defined as
with the norm
This motivates Sobolev spaces with non-integer order since in the above definition we can replace k by any real number s. The resulting spaces
are called Bessel potential spaces[5] (named after Friedrich Bessel). They are Banach spaces in general and Hilbert spaces in the special case p = 2.
For is the set of restrictions of functions from to Ω equipped with the norm
Again, Hs,p(Ω) is a Banach space and in the case p = 2 a Hilbert space.
Using extension theorems for Sobolev spaces, it can be shown that also Wk,p(Ω) = Hk,p(Ω) holds in the sense of equivalent norms, if Ω is domain with uniform Ck-boundary, k a natural number and 1 < p < ∞. By the embeddings
the Bessel potential spaces form a continuous scale between the Sobolev spaces From an abstract point of view, the Bessel potential spaces occur as complex interpolation spaces of Sobolev spaces, i.e. in the sense of equivalent norms it holds that
where:
Sobolev–Slobodeckij spaces
Another approach to define fractional order Sobolev spaces arises from the idea to generalize the Hölder condition to the Lp-setting.[6] For and the Slobodeckij seminorm (roughly analogous to the Hölder seminorm) is defined by
Let s > 0 be not an integer and set . Using the same idea as for the Hölder spaces, the Sobolev–Slobodeckij space[7] is defined as
It is a Banach space for the norm
If is suitably regular in the sense that there exist certain extension operators, then also the Sobolev–Slobodeckij spaces form a scale of Banach spaces, i.e. one has the continuous injections or embeddings
There are examples of irregular Ω such that is not even a vector subspace of for 0 < s < 1 (see Example 9.1 of [8])
From an abstract point of view, the spaces coincide with the real interpolation spaces of Sobolev spaces, i.e. in the sense of equivalent norms the following holds:
Sobolev–Slobodeckij spaces play an important role in the study of traces of Sobolev functions. They are special cases of Besov spaces.[4]
The constant arising in the characterization of the fractional Sobolev space can be characterized through the Bourgain-Brezis-Mironescu formula:
and the condition
characterizes those functions of that are in the first-order Sobolev space .[9]
Extension operators
If is a domain whose boundary is not too poorly behaved (e.g., if its boundary is a manifold, or satisfies the more permissive "cone condition") then there is an operator A mapping functions of to functions of such that:
Au(x) = u(x) for almost every x in and
is continuous for any 1 ≤ p ≤ ∞ and integer k.
We will call such an operator A an extension operator for
Case of p = 2
Extension operators are the most natural way to define for non-integer s (we cannot work directly on since taking Fourier transform is a global operation). We define by saying that if and only if Equivalently, complex interpolation yields the same spaces so long as has an extension operator. If does not have an extension operator, complex interpolation is the only way to obtain the spaces.
As a result, the interpolation inequality still holds.
Extension by zero
Like above, we define to be the closure in of the space of infinitely differentiable compactly supported functions. Given the definition of a trace, above, we may state the following
Theorem — Let be uniformly Cm regular, m ≥ s and let P be the linear map sending u in to
where d/dn is the derivative normal to G, and k is the largest integer less than s. Then is precisely the kernel of P.
If we may define its extension by zero in the natural way, namely
Theorem — Let The map is continuous into if and only if s is not of the form for n an integer.
For f ∈ Lp(Ω) its extension by zero,
is an element of Furthermore,
In the case of the Sobolev space W1,p(Ω) for 1 ≤ p ≤ ∞, extending a function u by zero will not necessarily yield an element of But if Ω is bounded with Lipschitz boundary (e.g. ∂Ω is C1), then for any bounded open set O such that Ω⊂⊂O (i.e. Ω is compactly contained in O), there exists a bounded linear operator[2]
such that for each a.e. on Ω, Eu has compact support within O, and there exists a constant C depending only on p, Ω, O and the dimension n, such that
It is a natural question to ask if a Sobolev function is continuous or even continuously differentiable. Roughly speaking, sufficiently many weak derivatives (i.e. large k) result in a classical derivative. This idea is generalized and made precise in the Sobolev embedding theorem.
Write for the Sobolev space of some compact Riemannian manifold of dimension n. Here k can be any real number, and 1 ≤ p ≤ ∞. (For p = ∞ the Sobolev space is defined to be the Hölder spaceCn,α where k = n + α and 0 < α ≤ 1.) The Sobolev embedding theorem states that if and then
and the embedding is continuous. Moreover, if and then the embedding is completely continuous (this is sometimes called Kondrachov's theorem or the Rellich–Kondrachov theorem). Functions in have all derivatives of order less than m continuous, so in particular this gives conditions on Sobolev spaces for various derivatives to be continuous. Informally these embeddings say that to convert an Lp estimate to a boundedness estimate costs 1/p derivatives per dimension.
There are similar variations of the embedding theorem for non-compact manifolds such as (Stein 1970). Sobolev embeddings on that are not compact often have a related, but weaker, property of cocompactness.
^Bessel potential spaces with variable integrability have been independently introduced by Almeida & Samko (A. Almeida and S. Samko, "Characterization of Riesz and Bessel potentials on variable Lebesgue spaces", J. Function Spaces Appl. 4 (2006), no. 2, 113–144) and Gurka, Harjulehto & Nekvinda (P. Gurka, P. Harjulehto and A. Nekvinda: "Bessel potential spaces with variable exponent", Math. Inequal. Appl. 10 (2007), no. 3, 661–676).
^In the literature, fractional Sobolev-type spaces are also called Aronszajn spaces, Gagliardo spaces or Slobodeckij spaces, after the names of the mathematicians who introduced them in the 1950s: N. Aronszajn ("Boundary values of functions with finite Dirichlet integral", Techn. Report of Univ. of Kansas 14 (1955), 77–94), E. Gagliardo ("Proprietà di alcune classi di funzioni in più variabili", Ricerche Mat. 7 (1958), 102–137), and L. N. Slobodeckij ("Generalized Sobolev spaces and their applications to boundary value problems of partial differential equations", Leningrad. Gos. Ped. Inst. Učep. Zap. 197 (1958), 54–112).
^Bourgain, Jean; Brezis, Haïm; Mironescu, Petru (2001). "Another look at Sobolev spaces". In Menaldi, José Luis (ed.). Optimal control and partial differential equations. In honour of Professor Alain Bensoussan's 60th birthday. Proceedings of the conference, Paris, France, December 4, 2000. Amsterdam: IOS Press; Tokyo: Ohmsha. pp. 439–455. ISBN978-1-58603-096-4.
References
Adams, Robert A.; Fournier, John (2003) [1975]. Sobolev Spaces. Pure and Applied Mathematics. Vol. 140 (2nd ed.). Boston, MA: Academic Press. ISBN978-0-12-044143-3..
Sobolev, S. L. (1963), "On a theorem of functional analysis", Eleven Papers on Analysis, American Mathematical Society Translations: Series 2, vol. 34, pp. 39–68, doi:10.1090/trans2/034/02, ISBN9780821817346; translation of Mat. Sb., 4 (1938) pp. 471–497.
Sobolev, S.L. (1963), Some applications of functional analysis in mathematical physics, Amer. Math. Soc..
Public university in Chicago, Illinois, U.S. Not to be confused with University of Chicago. University of Illinois ChicagoMottoTeach, research, serve, care.TypePublic Asian-serving[1] and Hispanic-serving[2] research universityEstablished1965; 58 years ago (1965)AccreditationHigher Learning CommissionAcademic affiliationsGCUURAUSUSpace-grantEndowment$3.38 billion (entire U of I system)[3]ChancellorMarie Lynn MirandaPresidentTimothy L. Killeen[4 ...
العلاقات الساموية الكمبودية ساموا كمبوديا ساموا كمبوديا تعديل مصدري - تعديل العلاقات الساموية الكمبودية هي العلاقات الثنائية التي تجمع بين ساموا وكمبوديا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه المقارنة سام
This article uses bare URLs, which are uninformative and vulnerable to link rot. Please consider converting them to full citations to ensure the article remains verifiable and maintains a consistent citation style. Several templates and tools are available to assist in formatting, such as reFill (documentation) and Citation bot (documentation). (August 2022) (Learn how and when to remove this template message) This article needs additional citations for verification. Please help improve this ...
Lancaster University Leipzig Fundación 2020LocalizaciónDirección Leipzig, GermanyCampus UrbanoAcademiaEstudiantes 100 (2022)Sitio web www.lancasterleipzig.de[editar datos en Wikidata] La Universidad de Lancaster en Leipzig (en inglés, Lancaster University Leipzig) es un campus filial de la Universidad de Lancaster. Establecida en 2020, es la primera universidad pública del Reino Unido con un campus en Alemania.[1] Los cursos que se ofrecen incluyen títulos universitario...
منارة رأس تنس الموقع ولاية الشلف، الجزائر إحداثيات 36°32′59″N 1°20′26″E / 36.5496861°N 1.3405889°E / 36.5496861; 1.3405889 الارتفاع 31 متر ارتفاع بؤري 89 متر نطاق المنارة 31 ميل بحري صفات الضوء Fl(2) W 10s رقم الأميرالية E6646 تعديل مصدري - تعديل منارة رأس تنس هي عبارة ...
Épinay-sur-SeineNegaraPrancisArondisemenSaint-DenisAntarkomuneCommunautéd'agglomérationPlaine CommuneKode INSEE/pos93031 / Épinay-sur-Seine merupakan sebuah komune di pinggiran utara Paris, Prancis. Terletak 11.3 km (7 mil) dari pusat kota Paris. Gereja Notre-Dame-des-Missions-du-cygne d'Enghien, dirancang Paul Tournon, dapat ditemukan di komune ini. Sejarah Tanggal 7 Agustus 1850, sebagian teritori Épinay-sur-Seine dipisahkan dan bergabung dengan teritori Deuil-la-Barre, Sain...
Cancer of plasma cells Not to be confused with Melanoma. Medical conditionMultiple myelomaOther namesPlasma cell myeloma, myelomatosis, Kahler's disease, myeloma[1]An artist's 3D depiction of myeloma cells producing monoclonal proteins of varying typesSpecialtyHematology and oncologySymptomsBone pain, fatigue[2]: 653 ComplicationsAmyloidosis, kidney problems, bone fractures, hyperviscosity syndrome, infections, anemia[3][2]: 653 ...
Bilateral relationsFrench-Iranian relations France Iran French–Iranian relations are the international relations between France and Iran. Iran has generally enjoyed a friendly relationship with France since the Middle Ages. The travels of Jean-Baptiste Tavernier are particularly well known to Safavid Persia. France has an embassy in Tehran and Iran has an embassy in Paris. Recently, however, relations have soured over Iran's refusal to halt uranium enrichment and France supporting the refer...
British actress (b. 1966) Shobna GulatiDLShobna Gulati in 2012Born (1966-08-07) 7 August 1966 (age 57)Oldham, Lancashire, EnglandOccupationsActressTelevision presenterWriterDancerYears active1991–presentTelevisionDinnerladies Coronation Street Doctor Who Midsomer Murders Hullraisers Inside No. 9Spouse Anshu Srivastava (m. 1990; div. 1994)Children1 (Akshay Gulati) Shobna Gulati DL (born 7 August 1966)[1] is a British actre...
Untuk acara televisi Irlandia, lihat The Late Late Show. The Late Late ShowPembuatDavid LettermanPresenterTom Snyder (1995–1999)Craig Kilborn (1999–2004)Craig Ferguson (2005–2014)James Corden (2015-sekarang)Negara asal Amerika SerikatJmlh. episode3,757 (as of September 20, 2013)ProduksiLokasi produksiCBS Television CityLos Angeles, CaliforniaDurasi62 min. (with commercials)RilisJaringan asliCBSRilis asli9 Januari 1995 –sekarangPranala luarSitus web The Late Late Show adalah ...
This article is about the Moroccan city. For the album by Rabih Abou-Khalil, see Al-Jadida (album). For the Palestinian town with a similar name, see Al-Judeida. Place in Casablanca-Settat, MoroccoEl Jadida Maziɣenالجديدة / مازيغنClockwise from top: the old city walls, a colonial-era building in El Jadida, the Portuguese cistern, a market in El Jadida, the gate to the old cityEl JadidaLocation in MoroccoShow map of MoroccoEl JadidaEl Jadida (Africa)Show map of AfricaCoordinates:...
Kościół św. Leonarda A-154 z 06.11.1969 i A-1319/M z dnia 15.01.2013[1] z dnia 06.11.1969 kościół filialny Drewniany kościół cmentarny w Lipnicy Dolnej Państwo Polska Województwo małopolskie Miejscowość Lipnica Dolna[2] Wyznanie katolickie Kościół rzymskokatolicki Parafia św. Andrzeja Apostoła w Lipnicy Murowanej Wezwanie św. Leonarda Historia Data zakończenia budowy koniec XV wieku Dane świątyni Styl gotycki Świątynia• materiał bud. • drewno Liczba ...
Raja Goujian Raja Goujian dari Yue (越王句踐) (?-465 SM) adalah seorang raja muda feodal yang berkuasa atas negara Yue (sekarang Zhejiang) pada zaman musim semi dan musim gugur, Dinasti Zhou. Ketabahannya menghadapi cobaan ketika menjadi tawanan di negara Wu hingga akhirnya berhasil bangkit dari keterpurukan membuat namanya dikenang sepanjang masa. Kehidupan awal Goujian adalah keturunan Yu(禹), pendiri Dinasti Xia, dinasti pertama Tiongkok. Dia mewarisi tahta setelah ayahnya, Raja Y...
Penyuntingan Artikel oleh pengguna baru atau anonim untuk saat ini tidak diizinkan hingga 30 Desember 2025.Lihat kebijakan pelindungan dan log pelindungan untuk informasi selengkapnya. Jika Anda tidak dapat menyunting Artikel ini dan Anda ingin melakukannya, Anda dapat memohon permintaan penyuntingan, diskusikan perubahan yang ingin dilakukan di halaman pembicaraan, memohon untuk melepaskan pelindungan, masuk, atau buatlah sebuah akun. PT MNC Sky Vision TbkLogo korporat sejak 20 Mei 2015Logo ...
1953 film directed by Thomas Carr Fighting LawmanDirected byThomas CarrWritten byDaniel B. UllmanProduced byVincent M. FennellyStarring Wayne Morris Virginia Grey John Kellogg Harry Lauter CinematographyGilbert WarrentonEdited bySam FieldsMusic byRaoul KraushaarProductioncompanyWestwood ProductionsDistributed byAllied Artists PicturesRelease date September 20, 1953 (1953-09-20) Running time71 minutesCountryUnited StatesLanguageEnglish Fighting Lawman is a 1953 American Western ...
Deze lijst omvat de voetbalcoaches die de Belgische club Eendracht Aalst hebben getraind vanaf midden 1969 tot op heden. Midden jaren '80 was Leo Canjels trainer van Aalst. Seizoen Trainer(s) 2023/24 Regi Van Acker Carl De Geyseleer (tot september 2023) 2022/23 Carl De Geyseleer 2021/22 Carl De Geyseleer 2020/21 Bart Van Renterghem 2019/20 Bart Van Renterghem 2018/19 Bart Van Renterghem Yves Van Borm (tot januari 2019) Carl De Geyseleer (ad interim) Tom De Cock (tot november 2018) 2017/18 Tom...
Questa voce o sezione sull'argomento Competizioni calcistiche non è ancora formattata secondo gli standard. Commento: Si invita a seguire il modello di voce Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Fußball-Bundesliga 1987-1988 Competizione Fußball-Bundesliga Sport Calcio Edizione 78ª Organizzatore DFB Date dal 31 luglio 1987al 21 maggio 1988 Luogo Germania Ovest Partecipanti 18 Formula Girone unico...
Provincial park in Alberta, Canada Dinosaur Provincial ParkHoodoos at Dinosaur Provincial ParkLocationCounty of Newell / Special Area No. 2, near BrooksAlbertaCoordinates50°45′42″N 111°29′06″W / 50.76167°N 111.48500°W / 50.76167; -111.48500Area73.29 square kilometres (28.30 sq mi)Founded1955Governing bodyAlberta Tourism, Parks and Recreation IUCN Category III (Natural Monument)Provincial Park of Alberta1955 UNESCO World Heritage SiteTypeNaturalCri...
Combined military forces of Slovenia Slovenian Armed ForcesSlovenska vojskaEmblem of the Slovenian ArmyFlag of the Slovenian Armed ForcesAnthem of the Slovenian Army:Naprej, zastava slave(English: Forward, Flag of Glory)Founded1991; 32 years ago (1991)Service branchesSlovenian Ground ForceSlovenian Air Force and Air DefenceSlovenian NavyHeadquartersLjubljanaWebsitewww.slovenskavojska.si/en/LeadershipCommander-in-Chief President Nataša Pirc MusarMinister of Defence Marjan Š...