Cylinder set

In mathematics, the cylinder sets form a basis of the product topology on a product of sets; they are also a generating family of the cylinder σ-algebra.

General definition

Given a collection of sets, consider the Cartesian product of all sets in the collection. The canonical projection corresponding to some is the function that maps every element of the product to its component. A cylinder set is a preimage of a canonical projection or finite intersection of such preimages. Explicitly, it is a set of the form, for any choice of , finite sequence of sets and subsets for .

Then, when all sets in are topological spaces, the product topology is generated by cylinder sets corresponding to the components' open sets. That is cylinders of the form where for each , is open in . In the same manner, in case of measurable spaces, the cylinder σ-algebra is the one which is generated by cylinder sets corresponding to the components' measurable sets.

The restriction that the cylinder set be the intersection of a finite number of open cylinders is important; allowing infinite intersections generally results in a finer topology. In the latter case, the resulting topology is the box topology; cylinder sets are never Hilbert cubes.

Cylinder sets in products of discrete sets

Let be a finite set, containing n objects or letters. The collection of all bi-infinite strings in these letters is denoted by

The natural topology on is the discrete topology. Basic open sets in the discrete topology consist of individual letters; thus, the open cylinders of the product topology on are

The intersections of a finite number of open cylinders are the cylinder sets

Cylinder sets are clopen sets. As elements of the topology, cylinder sets are by definition open sets. The complement of an open set is a closed set, but the complement of a cylinder set is a union of cylinders, and so cylinder sets are also closed, and are thus clopen.

Definition for vector spaces

Given a finite or infinite-dimensional vector space over a field K (such as the real or complex numbers), the cylinder sets may be defined as where is a Borel set in , and each is a linear functional on ; that is, , the algebraic dual space to . When dealing with topological vector spaces, the definition is made instead for elements , the continuous dual space. That is, the functionals are taken to be continuous linear functionals.

Applications

Cylinder sets are often used to define a topology on sets that are subsets of and occur frequently in the study of symbolic dynamics; see, for example, subshift of finite type. Cylinder sets are often used to define a measure, using the Kolmogorov extension theorem; for example, the measure of a cylinder set of length m might be given by 1/m or by 1/2m.

Cylinder sets may be used to define a metric on the space: for example, one says that two strings are ε-close if a fraction 1−ε of the letters in the strings match.

Since strings in can be considered to be p-adic numbers, some of the theory of p-adic numbers can be applied to cylinder sets, and in particular, the definition of p-adic measures and p-adic metrics apply to cylinder sets. These types of measure spaces appear in the theory of dynamical systems and are called nonsingular odometers. A generalization of these systems is the Markov odometer.

Cylinder sets over topological vector spaces are the core ingredient in the[citation needed] definition of abstract Wiener spaces, which provide the formal definition of the Feynman path integral or functional integral of quantum field theory, and the partition function of statistical mechanics.

See also

References

  • R.A. Minlos (2001) [1994], "Cylinder Set", Encyclopedia of Mathematics, EMS Press

Read other articles:

Calendar year 2022 January February March April May June July August September October November December Calendar year Millennium: 3rd millennium Centuries: 20th century 21st century 22nd century Decades: 2000s 2010s 2020s 2030s 2040s Years: 2019 2020 2021 2022 2023 2024 2025 2022 by topic Arts Animation Anime Architecture Comics Film Horror Literature Poetry Radio Science fiction Television Video games esports Music Albums By genre Classical Country Hip hop Jazz Latin Met...

 

Central Plaza LampungLokasiBandar LampungAlamatJl. R.A Kartini, Tanjung Karang Pusat, Bandar LampungTanggal dibuka2009PengembangNWP RetailPengurusPT. NWP RetailPemilikPT. NWP RetailJumlah lantai4Parkir1 Central Plaza Lampung adalah sebuah pusat perbelanjaan besar di Bandar Lampung, Indonesia di bawah Grup LIPPO. Mal ini didirikan pada tahun 2009. Mal ini terdiri dari 3 lantai dengan penyewa-penyewa perusahaan besar baik skala nasional maupun internasional, dan bertujuan untuk memenuhi kebutuh...

 

  تشايكلانا دي لا فرونتيرا (بالإسبانية: Chiclana de la Frontera)‏[1]   - بلدية -    تشايكلانا دي لا فرونتيرا تشايكلانا دي لا فرونتيرا  خريطة الموقع تاريخ التأسيس 15 مايو 1303  تقسيم إداري البلد إسبانيا  [2][3] المقاطعة قادس خصائص جغرافية إحداثيات 36°25′00″N 6

Hala Gąsienicowa Hala Gąsienicowa Hala Gąsienicowa Lage Woiwodschaft Kleinpolen, Polen Gebirge Hohe Tatra, Westtatra, Tatra, Karpaten Geographische Lage 49° 14′ 39″ N, 20° 0′ 26″ O49.24416666666720.007222222222Koordinaten: 49° 14′ 39″ N, 20° 0′ 26″ O Hala Gąsienicowa (Kleinpolen) Gewässer Czarny Potok Gąsienicowy, Sucha Woda Gąsienicowa Klima Hochgebirgsklima Vorlage:Infobox Gletscher/Wartung/Bildbesch...

 

Pour les articles homonymes, voir Les Essarts. Cet article est une ébauche concernant une commune du Doubs. Vous pouvez partager vos connaissances en l’améliorant (comment ?). Le bandeau {{ébauche}} peut être enlevé et l’article évalué comme étant au stade « Bon début » quand il comporte assez de renseignements encyclopédiques concernant la commune. Si vous avez un doute, l’atelier de lecture du projet Communes de France est à votre disposition pour vous aide...

 

Guerra del agua Ciudad de Cochabamba en la que tuvo lugar la Guerra del Agua.Fecha Noviembre de 1999-abril de 2001Lugar Cochabamba, BoliviaCausas Privatización del sistema de agua de Cochabamba (SEMAPA) y suministro de agua por parte de Aguas del Tunari.Métodos Manifestaciones, referéndum, bloqueos de carreteras, disturbiosResultado Expulsión de Aguas del TunariDerogación Ley 2029Partes enfrentadas Coordinadora en Defensa del Agua y la Vida Movimiento al Socialismo Conciencia de Patria M...

← 2005 •  • 2015 → Elecciones generales del Reino Unido650 escaños en la Cámara de los Comunes326 escaños para obtener mayoría absoluta Fecha Jueves 6 de mayo de 2010 Demografía electoral Votantes 29,691,780 Participación    65.1 %  3.7 % Resultados Conservador – David Cameron Votos 10,703,754  21.8 % Escaños obtenidos 306  108    36.1 % Laborista – Gordon Brown V...

 

Обґрунтування добропорядного використання для статті «Lego фільм: Бетмен» [?] Опис Постер Lego фільм: Бетмен Джерело http://kinomania.com.ua/legor-film-betmen Автор Дистриб'ютор, видавець, або художник Час створення 2016 Мета використання Ілюстрація предмета статті Замінність Неможлива; Р

 

City in Oregon, United States Oregon City redirects here. For other uses, see Oregon City (disambiguation). City in Oregon, United StatesOregon City, OregonCityThe McLoughlin House, est. 1845 SealNickname(s): End of the Oregon Trail, OCMotto(s): Urbs civitatis nostrae prima et mater (English: First and mothertown of our state)Location in OregonOregon CityShow map of OregonOregon CityShow map of the United StatesCoordinates: 45°21′26″N 122°35′30″W / 45.35722...

Austrian author and actress (1867-1933) Olga WohlbrückBorn5 July 1867 (1867-07-05)Gainfarn, Austria-HungaryDied20 July 1933 (1933-07-21) (aged 66)Berlin, Nazi GermanyOccupation(s)Actress, director, writerSpouse(s)Maximilian Bern (divorced) Leo Feld (divorced)Waldemar WendlandRelativesAnton Walbrook (cousin) Olga Wohlbrück (5 July 1867 – 20 July 1933) was an Austrian-German actress, director, and writer. She is considered the first female director in Germany.[1] Biog...

 

NBC affiliate in Texarkana, Texas Not to be confused with KTLA. KTAL-TVTexarkana, Texas–ArkansasShreveport, LouisianaUnited StatesCityTexarkana, TexasChannelsDigital: 26 (UHF)Virtual: 6BrandingNBC 6ProgrammingAffiliations6.1: NBCfor others, see § SubchannelsOwnershipOwnerNexstar Media Group(Nexstar Media Inc.)Sister stationsKSHV-TV, KMSS-TVHistoryFirst air dateAugust 16, 1953 (70 years ago) (1953-08-16)Former call signsKCMC-TV (1953–1961)KTAL (April 1, 1961–May 1, 19...

 

Fūrinkazan Fūrinkazan (風林火山code: ja is deprecated ), secara harafiah berarti Angin, Hutan, Api, Gunung, adalah strategi perang yang digunakan Takeda Shingen, seorang daimyo zaman Sengoku. Nama strategi perang ini diambil dari kutipan Seni Perang karya ahli strategi perang asal Cina, Sun Tzu: Secepat angin, setenang hutan, seganas api, dan sekokoh gunung Maksud strategi perang ini adalah: Secepat angin: Saat melakukan pergerakan, pasukannya bergerak secepat angin. Setenang hutan: Saa...

2024 Philadelphia PhilliesLeagueNational LeagueDivisionEastBallparkCitizens Bank ParkCityPhiladelphiaOwnersJohn S. MiddletonPresident of baseball operationsDave DombrowskiManagersRob ThomsonTelevisionNBC Sports PhiladelphiaNBC Sports Philadelphia +NBC Philadelphia (Tom McCarthy, John Kruk, Ben Davis, Mike Schmidt, Jimmy Rollins, Rubén Amaro Jr.)RadioPhillies Radio Network WIP SportsRadio 94.1 FM (English)(Scott Franzke, Larry Andersen, Kevin Stocker)WTTM (Spanish)(Danny Martinez, Bill K...

 

Culinary traditions of Chad Part of a series on theCulture of Chad History People Languages Cuisine Religion Art Literature Music Media Radio Television Cinema Sport Monuments World Heritage Sites Symbols Flag Coat of arms National anthem vte Kisra made with millet and okra sauce Location of Chad Chadian cuisine is the cooking traditions, practices, foods and dishes associated with the Republic of Chad. Chadians use a medium variety of grains, vegetables, fruits and meats. Commonly consumed g...

 

The Freilassing Locomotive World (Lokwelt Freilassing) is a railway museum in the Berchtesgadener Land, which is operated with the cooperation of the town of Freilassing and the Deutsches Museum. The museum is located on the site of the former Freilassing locomotive shed which belongs to the Deutsche Bahn AG and houses part of the Deutsches Museum's railway collection. The second part of the collection is in the transport centre of the Deutsches Museum on the Theresienhöhe in Munich. Modell ...

American visual artist; daughter of Nirvana frontman Kurt Cobain (born 1992) Frances Bean CobainCobain (left) with Courtney Love at the premiere of Kurt Cobain: Montage of Heck, 2015Born (1992-08-18) August 18, 1992 (age 31)Los Angeles, California, U.S.Other namesthespacewitchFiddle TimOccupationsVisual artistmodelHeight5 ft 3 in (160 cm)Spouses Isaiah Jones Silva ​ ​(m. 2014; div. 2017)​ Riley Hawk ​ ​&#...

 

استعباد النساء (بالإنجليزية: The Subjection of Women)‏  الطبعة الأولى لصفحة كتاب استعباد النساء المؤلف جون ستيوارت مل  اللغة الإنجليزية  الناشر لونغمان  تاريخ النشر 1869  النوع الأدبي مقالة  تعديل مصدري - تعديل   استعباد النساء (بالإنجليزية: The Subjection of Women)‏ هو عنوان مق...

 

African socialist political ideology Part of the Politics series onPan-Africanism Arts African art African art in Western collections (stolen art) Black Star of Africa Pan-African colours Pan-African flag Ideologies African anarchism African communalism African nationalism African philosophy African socialism Afrocentrism Black nationalism Garveyism Négritude Nkrumaism Rastafari Sankarism Third International Theory Ujamaa Organizations African Union Conscious Community Organisation of Africa...

Isla Eva-Liv Ubicación geográficaRegión Tierra de Francisco JoséCoordenadas 81°38′00″N 63°06′00″E / 81.633333333333, 63.1Ubicación administrativaPaís RusiaDivisión Óblast de ArcángelCaracterísticas generalesSuperficie 288 km²Longitud 28 kmPunto más alto (381 metros)PoblaciónPoblación 0 hab.  ()[editar datos en Wikidata]Ubicación del subgrupo de la Tierra Blanca del archipiélago de Francisco José. La isla Eva-Liv es la m...

 

Peta infrastruktur dan tata guna lahan di Komune Mazirot.  = Kawasan perkotaan  = Lahan subur  = Padang rumput  = Lahan pertanaman campuran  = Hutan  = Vegetasi perdu  = Lahan basah  = Anak sungaiMazirot merupakan sebuah komune di departemen Vosges yang terletak pada sebelah timur laut Prancis. Lihat pula Komune di departemen Vosges Referensi INSEE lbsKomune di departemen Vosges Les Ableuvenettes Ahéville Aingeville Ainvelle Allarmont Ambacourt Ameuvel...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!