Tightness of measures

In mathematics, tightness is a concept in measure theory. The intuitive idea is that a given collection of measures does not "escape to infinity".

Definitions

Let be a Hausdorff space, and let be a σ-algebra on that contains the topology . (Thus, every open subset of is a measurable set and is at least as fine as the Borel σ-algebra on .) Let be a collection of (possibly signed or complex) measures defined on . The collection is called tight (or sometimes uniformly tight) if, for any , there is a compact subset of such that, for all measures ,

where is the total variation measure of . Very often, the measures in question are probability measures, so the last part can be written as

If a tight collection consists of a single measure , then (depending upon the author) may either be said to be a tight measure or to be an inner regular measure.

If is an -valued random variable whose probability distribution on is a tight measure then is said to be a separable random variable or a Radon random variable.

Another equivalent criterion of the tightness of a collection is sequentially weakly compact. We say the family of probability measures is sequentially weakly compact if for every sequence from the family, there is a subsequence of measures that converges weakly to some probability measure . It can be shown that a family of measure is tight if and only if it is sequentially weakly compact.

Examples

Compact spaces

If is a metrizable compact space, then every collection of (possibly complex) measures on is tight. This is not necessarily so for non-metrisable compact spaces. If we take with its order topology, then there exists a measure on it that is not inner regular. Therefore, the singleton is not tight.

Polish spaces

If is a Polish space, then every probability measure on is tight. Furthermore, by Prokhorov's theorem, a collection of probability measures on is tight if and only if it is precompact in the topology of weak convergence.

A collection of point masses

Consider the real line with its usual Borel topology. Let denote the Dirac measure, a unit mass at the point in . The collection

is not tight, since the compact subsets of are precisely the closed and bounded subsets, and any such set, since it is bounded, has -measure zero for large enough . On the other hand, the collection

is tight: the compact interval will work as for any . In general, a collection of Dirac delta measures on is tight if, and only if, the collection of their supports is bounded.

A collection of Gaussian measures

Consider -dimensional Euclidean space with its usual Borel topology and σ-algebra. Consider a collection of Gaussian measures

where the measure has expected value (mean) and covariance matrix . Then the collection is tight if, and only if, the collections and are both bounded.

Tightness and convergence

Tightness is often a necessary criterion for proving the weak convergence of a sequence of probability measures, especially when the measure space has infinite dimension. See

Exponential tightness

A strengthening of tightness is the concept of exponential tightness, which has applications in large deviations theory. A family of probability measures on a Hausdorff topological space is said to be exponentially tight if, for any , there is a compact subset of such that

References

  • Billingsley, Patrick (1995). Probability and Measure. New York, NY: John Wiley & Sons, Inc. ISBN 0-471-00710-2.
  • Billingsley, Patrick (1999). Convergence of Probability Measures. New York, NY: John Wiley & Sons, Inc. ISBN 0-471-19745-9.
  • Ledoux, Michel; Talagrand, Michel (1991). Probability in Banach spaces. Berlin: Springer-Verlag. pp. xii+480. ISBN 3-540-52013-9. MR1102015 (See chapter 2)

Read other articles:

Rajat AroraaRajat AroraaLahirRajat Arora23 Juli 1975 (umur 48)Delhi, IndiaNama lainRajat AroraaAlmamaterAsian Academy of Film & Television[1]PekerjaanPenulis, sutradaraTahun aktif2005 – sekarang Rajat Aroraa (lahir 23 Juli 1975) adalah seorang penulis independen dalam industri film dan televisi India. Ia dikenal atas film-filmnya Once Upon a Time in Mumbai (2010), The Dirty Picture (2011), Kick (2014), Gabbar Is Back (2015) dan Taxi No. 9211 (2006) Referensi ^ htt...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Betty Zane – news · newspapers · books · scholar · JSTOR (September 2014) (Learn how and when to remove this template message) Betty ZaneA 19th-century depiction of Elizabeth Zane's legendary feat of retrieving powder during the 1782 siege of Fort HenryBorn(176...

 

453 ТеяВідкриттяВідкривач Огюст ШарлуаМісце відкриття Обсерваторія НіцциДата відкриття 22 лютого 1900ПозначенняПозначення 453 TeaНазвана на честь невідомоТимчасові позначення 1900 FA, 1969 QC, A901 QAКатегорія малої планети Астероїд головного поясуОрбітальні характеристики[1] Еп

2007 video game This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Kane & Lynch: Dead Men – news · newspapers · books · scholar · JSTOR (June 2008) (Learn how and when to remove this template message) 2007 video gameKane & Lynch: Dead MenDeveloper(s)IO InteractivePublisher(s)Eidos InteractiveDirector(s)...

 

Badminton nosJogos Europeus de 2015 Individual   masc   fem   Duplas   masc   fem   misto O evento duplas masculinas do badminton nos Jogos Europeus de 2015 foi disputado na Arena de Baku, em Baku, no Azerbaijão. A prova foi realizada entre os dias 22 a 27 de junho de 2015.[1] Calendário Horário de verão do Azerbaijão (UTC+5). Data Horário Fase 22 de junho 09:00 Primeira rodada[2] 23 de junho 09:00 Segunda rodada[3] 24 de junho 09:00 Terceira rodada[4] 25 d...

 

Mesotelioma (Mesothelioma)CT scan menunjukkan sisi kiri Mesotelioma dengan mediastinal kelenjar getah bening yang membesar.Informasi umumNama lainMalignant mesotheliomaSpesialisasiOnkologiPenyebab~ 40 tahun setelah terpapar asbestos[1]Faktor risikoGenetika, terinfeksi Virus simian 40[1]Aspek klinisGejala dan tandasesak napas, perut membengkak, nyeri di dinding dada, batuk, rasa lelah, dan turun berat badan[2]KomplikasiCairan di sekitar paru[2]Awal munculSatu ka...

Kiesdistrict Sneek (1888) Tweede Kamerverkiezingen in het kiesdistrict Sneek (1888-1918) geeft een overzicht van verkiezingen voor de Nederlandse Tweede Kamer in het kiesdistrict Sneek in de periode 1888-1918.[1] Het kiesdistrict Sneek was al ingesteld in 1848. De indeling van het kiesdistrict werd gewijzigd na de grondwetsherziening van 1887; tevens werd het kiesdistrict toen omgezet in een enkelvoudig district.[2] Tot het kiesdistrict behoorden vanaf dat moment de volgende g...

 

Metro system of the city of Foshan in Guangdong Province, China Foshan Metro(FMetro)OverviewOwnerCity of FoshanLocaleFoshan & GuangzhouTransit typeRapid transitNumber of lines3Number of stations61Websitewww.fmetro.netOperationBegan operation3 November 2010 (2010-11-03)Operator(s)Foshan Metro GroupTechnicalSystem length112.7 km (70.0 mi)Track gauge1,435 mm (4 ft 8+1⁄2 in)ElectrificationOverhead lines Foshan MetroTraditional Chinese佛...

 

Hill station in Maharashtra, IndiaChikhaldaraHill stationChikhaldaraLocation in MaharashtraCoordinates: 21°13′N 77°43′E / 21.21°N 77.72°E / 21.21; 77.72Country IndiaStateMaharashtraDistrictAmravatiElevation1,188 m (3,898 ft)Population (2001) • Total4,718Languages • OfficialMarathiTime zoneUTC+5:30 (IST)Vehicle registrationMH- 27 Chikhaldara is a hill station and a municipal council in Amravati district in the Indian s...

Село Островецьпол. Ostrowiec Координати 52°22′ пн. ш. 22°28′ сх. д. / 52.367° пн. ш. 22.467° сх. д. / 52.367; 22.467Координати: 52°22′ пн. ш. 22°28′ сх. д. / 52.367° пн. ш. 22.467° сх. д. / 52.367; 22.467 Країна ПольщаПольщаВоєводство Мазовецьке воєв...

 

Mercury Musical DevelopmentsAbbreviationMMDFormation1992Legal statusRegistered charityHeadquartersLondonLocation3rd Floor, 2 Grosvenor Gardens, London SW1W 0DHRegion served United KingdomMembership 560Executive DirectorEmily GrayWebsitemercurymusicals.com Mercury Musical Developments (MMD) is the UK's largest membership organisation dedicated to developing new musical theatre writing, based in the United Kingdom dedicated to developing new writing in musical theatre.[1] Founded in 199...

 

Crater on Mars This article is about the impact crater on Mars. For other uses, see Erebus (disambiguation). Crater on MarsErebusPlanetMarsRegionMeridiani PlanumCoordinates2°06′S 5°30′W / 2.1°S 5.5°W / -2.1; -5.5QuadrangleMargaritifer SinusDiameter~350 metresDepthEffectively zero depthDiscovererOpportunity roverEponymHMS Erebus Erebus is located near the center of this satellite image. Erebus is a crater lying situated within the Margaritifer Sinus quadrangle (...

English soccer, rugby union & league player For other people named John Sutcliffe, see John Sutcliffe (disambiguation). John Willie Sutcliffe Sutcliffe in 1895 with EnglandPersonal informationFull name John William Sutcliffe[1]Date of birth (1868-04-14)14 April 1868Place of birth Shibden, Yorkshire, EnglandDate of death 7 July 1947(1947-07-07) (aged 79)Place of death Bradford, Yorkshire, EnglandHeight 6 ft 0 in (1.83 m)Position(s) GoalkeeperSenior career*Years ...

 

Historical military conflict Shaba IPart of the Shaba Invasions and the Cold WarZairian troops with a beret-wearing Moroccan military advisorDate8 March – 26 May 1977 (2 months, 2 weeks and 4 days)Location Shaba Province, Zaire Result Zairian victory FNLC expelled from ShabaBelligerents  Zaire  Morocco Egypt  France  Belgium Supported by:  United States[1]  China[2]  Saudi Arabia[3] Sudan[2]  Nigeria[...

 

Human settlement in EnglandStoke PriorChurch of St Michael, Stoke PriorStoke PriorLocation within WorcestershirePopulation4,559 (parish) (2001 census)[1]OS grid referenceSO946672Civil parishStokeDistrictBromsgroveShire countyWorcestershireRegionWest MidlandsCountryEnglandSovereign stateUnited KingdomPost townBromsgrovePostcode districtB60Dialling code01527PoliceWest MerciaFireHereford and WorcesterAmbulanceWest Midlands List of places UK England Worc...

Mushroomhead Mushroomhead en vivo en el (2011).Datos generalesOrigen Cleveland, Ohio,  Estados UnidosEstado ActivoInformación artísticaGénero(s) Nu metalHeavy metalMetal industrialMetal alternativoElectro-industrialAvant-garde metalPeríodo de actividad 1993 - actualmenteDiscográfica(s) Filthy HandsEclipse RecordsUniversal RecordsMegaforce RecordsArtistas relacionados 216HatrixKriadiazVentanaTenafly Viper3 Quarters DeadState of Conviction10 Thousand CadillacsWebSitio web Si...

 

Organization of coaches and collegiate tennis players This article relies excessively on references to primary sources. Please improve this article by adding secondary or tertiary sources. Find sources: Intercollegiate Tennis Association – news · newspapers · books · scholar · JSTOR (December 2022) (Learn how and when to remove this template message) Intercollegiate Tennis AssociationFormationJune 1956LocationTempe, Arizona, U.S.Websitewww.wearecollege...

 

فاضلة إبراهيم سلطان  فاضلة إبراهيم سلطان مع أمها خانزاده سلطان    معلومات شخصية الميلاد 8 أغسطس 1941 (83 سنة)  باريس،  ونويي-سور-سين  مواطنة تركيا  الزوج سعاد خيري أرغوبلو  [لغات أخرى]‏ (1965–1980)جون ألفونس برنارد  [لغات أخرى]‏ (1983–2015)  الأب محمد ع...

Дэвид Зейесангл. David Zayas Дата рождения 15 августа 1962(1962-08-15)[1] (61 год) Место рождения Пуэрто-Рико Гражданство  США Профессия актёр, продюсер Карьера 1995 — настоящее время Направление драма, триллер, боевик, криминал IMDb ID 0953882 davidzayas.com  Медиафайлы на Викиск...

 

  هذه المقالة عن جمهورية الكونغو الديمقراطية (زائير سابقًا). لجمهورية الكونغو، طالع جمهورية الكونغو.   جمهورية الكونغو الديمقراطية (بالفرنسية: République démocratique du Congo)‏[1]  جمهورية الكونغو الديمقراطيةعلم جمهورية الكونغو الديمقراطية جمهورية الكونغو الديمقراطيةش...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!