Probability mass function

The graph of a probability mass function. All the values of this function must be non-negative and sum up to 1.

In probability and statistics, a probability mass function (sometimes called probability function or frequency function[1]) is a function that gives the probability that a discrete random variable is exactly equal to some value.[2] Sometimes it is also known as the discrete probability density function. The probability mass function is often the primary means of defining a discrete probability distribution, and such functions exist for either scalar or multivariate random variables whose domain is discrete.

A probability mass function differs from a probability density function (PDF) in that the latter is associated with continuous rather than discrete random variables. A PDF must be integrated over an interval to yield a probability.[3]

The value of the random variable having the largest probability mass is called the mode.

Formal definition

Probability mass function is the probability distribution of a discrete random variable, and provides the possible values and their associated probabilities. It is the function defined by

for ,[3] where is a probability measure. can also be simplified as .[4]

The probabilities associated with all (hypothetical) values must be non-negative and sum up to 1,

and

Thinking of probability as mass helps to avoid mistakes since the physical mass is conserved as is the total probability for all hypothetical outcomes .

Measure theoretic formulation

A probability mass function of a discrete random variable can be seen as a special case of two more general measure theoretic constructions: the distribution of and the probability density function of with respect to the counting measure. We make this more precise below.

Suppose that is a probability space and that is a measurable space whose underlying σ-algebra is discrete, so in particular contains singleton sets of . In this setting, a random variable is discrete provided its image is countable. The pushforward measure —called the distribution of in this context—is a probability measure on whose restriction to singleton sets induces the probability mass function (as mentioned in the previous section) since for each .

Now suppose that is a measure space equipped with the counting measure . The probability density function of with respect to the counting measure, if it exists, is the Radon–Nikodym derivative of the pushforward measure of (with respect to the counting measure), so and is a function from to the non-negative reals. As a consequence, for any we have

demonstrating that is in fact a probability mass function.

When there is a natural order among the potential outcomes , it may be convenient to assign numerical values to them (or n-tuples in case of a discrete multivariate random variable) and to consider also values not in the image of . That is, may be defined for all real numbers and for all as shown in the figure.

The image of has a countable subset on which the probability mass function is one. Consequently, the probability mass function is zero for all but a countable number of values of .

The discontinuity of probability mass functions is related to the fact that the cumulative distribution function of a discrete random variable is also discontinuous. If is a discrete random variable, then means that the casual event is certain (it is true in 100% of the occurrences); on the contrary, means that the casual event is always impossible. This statement isn't true for a continuous random variable , for which for any possible . Discretization is the process of converting a continuous random variable into a discrete one.

Examples

Finite

There are three major distributions associated, the Bernoulli distribution, the binomial distribution and the geometric distribution.

  • Bernoulli distribution: ber(p) , is used to model an experiment with only two possible outcomes. The two outcomes are often encoded as 1 and 0. An example of the Bernoulli distribution is tossing a coin. Suppose that is the sample space of all outcomes of a single toss of a fair coin, and is the random variable defined on assigning 0 to the category "tails" and 1 to the category "heads". Since the coin is fair, the probability mass function is
  • Binomial distribution, models the number of successes when someone draws n times with replacement. Each draw or experiment is independent, with two possible outcomes. The associated probability mass function is .
    The probability mass function of a fair die. All the numbers on the die have an equal chance of appearing on top when the die stops rolling.
    An example of the binomial distribution is the probability of getting exactly one 6 when someone rolls a fair die three times.
  • Geometric distribution describes the number of trials needed to get one success. Its probability mass function is .
    An example is tossing a coin until the first "heads" appears. denotes the probability of the outcome "heads", and denotes the number of necessary coin tosses.
    Other distributions that can be modeled using a probability mass function are the categorical distribution (also known as the generalized Bernoulli distribution) and the multinomial distribution.
  • If the discrete distribution has two or more categories one of which may occur, whether or not these categories have a natural ordering, when there is only a single trial (draw) this is a categorical distribution.
  • An example of a multivariate discrete distribution, and of its probability mass function, is provided by the multinomial distribution. Here the multiple random variables are the numbers of successes in each of the categories after a given number of trials, and each non-zero probability mass gives the probability of a certain combination of numbers of successes in the various categories.

Infinite

The following exponentially declining distribution is an example of a distribution with an infinite number of possible outcomes—all the positive integers: Despite the infinite number of possible outcomes, the total probability mass is 1/2 + 1/4 + 1/8 + ⋯ = 1, satisfying the unit total probability requirement for a probability distribution.

Multivariate case

Two or more discrete random variables have a joint probability mass function, which gives the probability of each possible combination of realizations for the random variables.

References

  1. ^ 7.2 - Probability Mass Functions | STAT 414 - PennState - Eberly College of Science
  2. ^ Stewart, William J. (2011). Probability, Markov Chains, Queues, and Simulation: The Mathematical Basis of Performance Modeling. Princeton University Press. p. 105. ISBN 978-1-4008-3281-1.
  3. ^ a b A modern introduction to probability and statistics : understanding why and how. Dekking, Michel, 1946-. London: Springer. 2005. ISBN 978-1-85233-896-1. OCLC 262680588.{{cite book}}: CS1 maint: others (link)
  4. ^ Rao, Singiresu S. (1996). Engineering optimization : theory and practice (3rd ed.). New York: Wiley. ISBN 0-471-55034-5. OCLC 62080932.

Further reading

Read other articles:

  「泰皇」重定向至此。关于泰王國君主,请见「泰國國王」。 《三才圖會》中的人皇氏 人皇氏,是中國傳說時代的三皇之一。根據《春秋命歷序》,地皇氏之後,人皇興起,號曰握元,人皇有九人,皆為兄弟,出於谷口(或載為陽谷、暘谷),分管九州,各立城邑,經歷一百五十世,共在位四萬五千六百年[1]。 《尚書大傳》以伏羲為人皇。《洞神八帝妙精經...

 

 

City in the Republic of Kalmykia, Russia For other uses, see Elista (disambiguation). City in Kalmykia, RussiaElista ЭлистаCity[1]Other transcription(s) • KalmykЭлст • Former nameStepnoy (Степной)Golden Temple, Echo Monument, Monument to Oka Gorodovikov, Stupa of enlightenment, Golden Door FlagCoat of armsLocation of Elista ElistaLocation of ElistaShow map of European RussiaElistaElista (Europe)Show map of EuropeCoordinates: 46°19′N 44...

 

 

Halaman ini berisi artikel tentang Kota. Untuk Kabupaten bernama sama, lihat Kabupaten Madiun. Untuk Kegunaan lain, lihat Madiun (disambiguasi). Kota MadiunKotaTranskripsi bahasa daerah • Hanacarakaꦩꦝꦶꦪꦸꦤ꧀ • PegonمادييونDari atas, kiri ke kanan: Gedung Balai Kota Madiun, Tugu Pendekar, dan Bangunan di kawasan Bosbow LambangJulukan: Kota GadisKota BremKota PecelKota SastraKota BudayaKota IndustriKota PelajarKota KeretaKota KarismatikKota P...

This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: List of Tamil national-type primary schools in Malacca – news · newspapers · books · scholar · JSTOR (August 2019) This is a list of Tamil national-type primary schools (SJK(T)) in Malacca, Malaysia. As of June 2022, there are 21 Tamil primary schools...

 

 

Preparation of soil by mechanical agitation Tillage after corn harvest (Click for video) Tillage is the agricultural preparation of soil by mechanical agitation of various types, such as digging, stirring, and overturning. Examples of human-powered tilling methods using hand tools include shoveling, picking, mattock work, hoeing, and raking. Examples of draft-animal-powered or mechanized work include ploughing (overturning with moldboards or chiseling with chisel shanks), rototilling, rolling...

 

 

Ескадрені міноносці типу C та D C and D-class destroyer Британський лідер ескадрених міноносців типу «D» HMS «Дункан» Служба Тип/клас ескадрені міноносці Попередній клас типу A та B Наступний клас типу E та F Держава прапора  Велика Британія Належність Королівський ВМФ Великої Британ

Bagian dalam Masjid Masjid Jami' Al-Makmur adalah sebuah Masjid bersejarah yang terletak di Jl. Raden Saleh Raya No. 30, Cikini, Menteng, Jakarta Pusat. Masjid yang dibangun pada tahun 1890 ini merupakan pindahan dari sebuah Surau yang dibangun oleh Raden Saleh sekitar tahun 1860 di samping rumah kediamannya. Sejarah Foto Masjid zaman Hindia Belanda Sejarah Masjid Jami' Al-Makmur dimulai pada tahun 1860 ketika Raden Saleh dan masyarakat sekitar membangun sebuah Surau sederhana yang terbuat da...

 

 

|Зображення_підпис= École Internationale de Genève Міжнародна школа в Женеві Тип міжнародна школаКраїна  Швейцарія 46°11′55″ пн. ш. 6°10′21″ сх. д. / 46.19861111113877428° пн. ш. 6.17250000002777810° сх. д. / 46.19861111113877428; 6.17250000002777810Координати: 46°11′55″ пн. ш. 6°10′21″ сх....

 

 

American television situation comedy Honestly, Celeste! is an American television situation comedy that was broadcast on CBS from October 10, 1954, to December 5, 1954. It starred Celeste Holm[1] in her first regular TV series.[2] Premise, cast and characters Scott McKay and Celeste Holm in Honestly, Celeste! Celeste Anders left her position as a college journalism teacher in the American Midwest to work as a reporter at a newspaper in New York City.[3] As a reporter, ...

Historic district in Nebraska, United States For the city hall in Ponca City, Oklahoma, see City Hall in Ponca City. For the historic district in Ponca City, Oklahoma, see Downtown Ponca City Historic District. United States historic placePonca Historic DistrictU.S. National Register of Historic PlacesU.S. Historic district Bank of Dixon County buildingShow map of NebraskaShow map of the United StatesLocationRoughly bounded by East, Court, 2nd and 3rd Sts., Ponca, NebraskaArea40 acres (16...

 

 

2020 promotional single by Kylie Minogue I Love ItPromotional single by Kylie Minoguefrom the album Disco Released23 October 2020 (2020-10-23)[1]Genre Disco[2][3] Length3:50Label Darenote BMG Songwriter(s) Kylie Minogue Richard Stannard Duck Blackwell Producer(s)Richard StannardDuck BlackwellAudio videoI Love It on YouTube I Love It is a song by Australian singer-songwriter Kylie Minogue from her 15th studio album Disco (2020). It was released by Darenot...

 

 

KhoidLocation of the Khoid in the Oirat ConfederationRegions with significant populations Mongolia5 000[1] China15 000 Kalmykiaa few thousands?LanguagesOirat dialectReligionTibetan Buddhism, Mongolian shamanismRelated ethnic groupsMongols, especially Oirats The Khoid, also Khoyd or Khoit (Chinese: 辉特; Northern ones/people) people are an Oirat subgroup of the Choros clan. Once one of largest tribes of the Oirats. Amursana was a Khoid Oirat Partisans of Amursana, ...

American stock car driver and Marine Josh WhiteWhite at Martinsville Speedway in 2016Birth nameJoshua WhiteBorn (1991-05-07) May 7, 1991 (age 32)Charleston, West Virginia, U.S.Allegiance United States of AmericaService/branchMarine Corps ReserveYears of service2010–2015RankLance corporalNASCAR driver NASCAR Craftsman Truck Series career1 race run over 1 year2016 position79thBest finish79th (2016)First race2016 Texas Roadhouse 200 (Martinsville) Wins Top tens Poles 0 0 0 ARCA ...

 

 

CatmanPoster ResmiNama lainTionghoa我爱喵星人 Sutradara Park Hee-kon ProduserDitulis olehPemeranOh Se-hunWu QianDistributorBoston E&MCroton MediaTanggal rilis2017Durasi90 menitNegara Tiongkok Korea Selatan Bahasa Tionghoa Catman adalah sebuah film fantasi-romantis Korea Selatan-Tiongkok yang disutradarai Park Hee-gon[1] dan dibintangi oleh Oh Se-hun,[2] dan Wu Qian. Film ini dijadwalkan dirilis pada paruh pertama 2017.[3][4][5] Alur Liang...

 

 

العلاقات المكسيكية الكوستاريكية المكسيك كوستاريكا   المكسيك   كوستاريكا تعديل مصدري - تعديل   العلاقات المكسيكية الكوستاريكية هي العلاقات الثنائية التي تجمع بين المكسيك وكوستاريكا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للد...

Working cattle ranch on the Island of Hawaii in the U.S. state of Hawaii Horses at Puuopelu at Parker Ranch Parker Ranch grazing lands.Parker Ranch is a working cattle ranch on the Island of Hawaii in the U.S. state of Hawaii, now run by a charitable trust.[1] History[2] The ranch was founded in 1847 and is one of the oldest ranches in the United States, pre-dating many mainland ranches in Texas and other southwestern states by more than 30 years. Spread across approximately 1...

 

 

2008 Japanese filmPrison GirlTheatrical posterDirected byNaoyuki TomomatsuWritten byChisato OgawaraStarringAsami Sugiura Hiroshi Fujita Yukiharu Inoue Fumiaki KatoCinematographyKatsuji OyamadaEdited byShoji SakaiDistributed byOP EigaRelease date September 19, 2008 (2008-09-19) Running time61 minutesCountryJapanLanguageJapanese Prison Girl (女囚アヤカ いたぶり牝調教, Joshū Ayaka: Itaburi Mesu Chōkyō) also titled Female Prisoner Ayaka: Tormenting and Breaking in ...

 

 

Las provincias de Etiopía fueron la división territorial que estuvo vigente en dicho país africano entre 1942 y 1995. Durante este período, el país estaba dividido en 14 provincias, las cuales se subdividían en distritos o awrajjas. Este sistema fue reemplazado en 1995, luego de la aprobación de una nueva constitución, por un sistema de regiones étnicamente diferenciadas y denominadas oficialmente kililoch, más dos ciudades con estatus especial. Eritrea fue una provincia de Etiopía...

1935 film The Blonde CarmenDirected byVictor JansonWritten byRoland Schacht [de] (play)Hans H. ZerlettProduced byArnold PressburgerGregor RabinovitchStarringMártha EggerthWolfgang LiebeneinerIda WüstCinematographyReimar KuntzeEdited byRoger von NormanMusic byFranz GrotheProductioncompanyCine-Allianz TonfilmDistributed byRota-FilmRelease date 7 August 1935 (1935-08-07) Running time101 minutesCountryGermanyLanguageGerman The Blonde Carmen (German: Die blonde Carmen...

 

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Stranger Things Have Happened Peter Tork album – news · newspapers · books · scholar · JSTOR (November 2009) (Learn how and when to remove this template message) 1994 studio album by Peter TorkStranger Things Have HappenedStudio album by Peter Tork...

 

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!