Unit circle

Unit circle
Illustration of a unit circle. The variable t is an angle measure.
Animation of the act of unrolling the circumference of a unit circle, a circle with radius of 1. Since C = 2πr, the circumference of a unit circle is .

In mathematics, a unit circle is a circle of unit radius—that is, a radius of 1.[1] Frequently, especially in trigonometry, the unit circle is the circle of radius 1 centered at the origin (0, 0) in the Cartesian coordinate system in the Euclidean plane. In topology, it is often denoted as S1 because it is a one-dimensional unit n-sphere.[2][note 1]

If (x, y) is a point on the unit circle's circumference, then |x| and |y| are the lengths of the legs of a right triangle whose hypotenuse has length 1. Thus, by the Pythagorean theorem, x and y satisfy the equation

Since x2 = (−x)2 for all x, and since the reflection of any point on the unit circle about the x- or y-axis is also on the unit circle, the above equation holds for all points (x, y) on the unit circle, not only those in the first quadrant.

The interior of the unit circle is called the open unit disk, while the interior of the unit circle combined with the unit circle itself is called the closed unit disk.

One may also use other notions of "distance" to define other "unit circles", such as the Riemannian circle; see the article on mathematical norms for additional examples.

In the complex plane

Animation of the unit circle with angles

In the complex plane, numbers of unit magnitude are called the unit complex numbers. This is the set of complex numbers z such that When broken into real and imaginary components this condition is

The complex unit circle can be parametrized by angle measure from the positive real axis using the complex exponential function, (See Euler's formula.)

Under the complex multiplication operation, the unit complex numbers form a group called the circle group, usually denoted In quantum mechanics, a unit complex number is called a phase factor.

Trigonometric functions on the unit circle

All of the trigonometric functions of the angle θ (theta) can be constructed geometrically in terms of a unit circle centered at O.
Sine function on unit circle (top) and its graph (bottom)

The trigonometric functions cosine and sine of angle θ may be defined on the unit circle as follows: If (x, y) is a point on the unit circle, and if the ray from the origin (0, 0) to (x, y) makes an angle θ from the positive x-axis, (where counterclockwise turning is positive), then

The equation x2 + y2 = 1 gives the relation

The unit circle also demonstrates that sine and cosine are periodic functions, with the identities for any integer k.

Triangles constructed on the unit circle can also be used to illustrate the periodicity of the trigonometric functions. First, construct a radius OP from the origin O to a point P(x1,y1) on the unit circle such that an angle t with 0 < t < π/2 is formed with the positive arm of the x-axis. Now consider a point Q(x1,0) and line segments PQ ⊥ OQ. The result is a right triangle △OPQ with ∠QOP = t. Because PQ has length y1, OQ length x1, and OP has length 1 as a radius on the unit circle, sin(t) = y1 and cos(t) = x1. Having established these equivalences, take another radius OR from the origin to a point R(−x1,y1) on the circle such that the same angle t is formed with the negative arm of the x-axis. Now consider a point S(−x1,0) and line segments RS ⊥ OS. The result is a right triangle △ORS with ∠SOR = t. It can hence be seen that, because ∠ROQ = π − t, R is at (cos(π − t), sin(π − t)) in the same way that P is at (cos(t), sin(t)). The conclusion is that, since (−x1, y1) is the same as (cos(π − t), sin(π − t)) and (x1,y1) is the same as (cos(t),sin(t)), it is true that sin(t) = sin(π − t) and −cos(t) = cos(π − t). It may be inferred in a similar manner that tan(π − t) = −tan(t), since tan(t) = y1/x1 and tan(π − t) = y1/x1. A simple demonstration of the above can be seen in the equality sin(π/4) = sin(/4) = 1/2.

When working with right triangles, sine, cosine, and other trigonometric functions only make sense for angle measures more than zero and less than π/2. However, when defined with the unit circle, these functions produce meaningful values for any real-valued angle measure – even those greater than 2π. In fact, all six standard trigonometric functions – sine, cosine, tangent, cotangent, secant, and cosecant, as well as archaic functions like versine and exsecant – can be defined geometrically in terms of a unit circle, as shown at right.

Using the unit circle, the values of any trigonometric function for many angles other than those labeled can be easily calculated by hand using the angle sum and difference formulas.

The unit circle, showing coordinates of certain points

Complex dynamics

Unit circle in complex dynamics

The Julia set of discrete nonlinear dynamical system with evolution function: is a unit circle. It is a simplest case so it is widely used in the study of dynamical systems.

See also

Notes

  1. ^ For further discussion, see the technical distinction between a circle and a disk.[2]

References

  1. ^ Weisstein, Eric W. "Unit Circle". mathworld.wolfram.com. Retrieved 2020-05-05.
  2. ^ a b Weisstein, Eric W. "Hypersphere". mathworld.wolfram.com. Retrieved 2020-05-06.

Read other articles:

Part of the LGBT rights seriesLegal status ofsame-sex unions Marriage Andorra Argentina Australia Austria Belgium Brazil Canada Chile Colombia Costa Rica Cuba Denmark Ecuador Estonia* Finland France Germany Iceland Ireland Luxembourg Malta Mexico Nepal Netherlands1 New Zealand2 Norway Portugal Slovenia South Africa Spain Sweden Switzerland Taiwan United Kingdom3 United States4 Uruguay Civil unions andregistered partnerships Bolivia Croatia Cyprus Czech Republic Greece Hungary Italy Latvia Lie...

 

 

Gereja Santo Silvester PertamaSan Silvestro in Capite (Italia) Sancti Silvestri in Capite (Latin)Bagian depan San Silvestro in Capite, Gereja Nasional di Roma dari Umat Katolik Inggris di Roma, di Piazza San Silvestro.AgamaAfiliasi agamaKatolik RomaEcclesiastical or organizational statusbasilika minor, gereja nasional di Roma dari Britania Raya, titulusKepemimpinanDesmond ConnellLokasiLokasi RomaKoordinat41°54′11.2″N 12°28′50.3″E / 41.903111°N 12.480639°E /...

 

 

Херсонське училище культури — вищий навчальний заклад І-ІІ рівня акредитації з підготовки молодших спеціалістів в галузі культури. Засноване у 1944 році, як технікум політосвіти з відділеннями бібліотечної та клубної роботи, пізніше технікум був перейменований в культ

Norwegian physician and politician Per Kristian SkulbergPer Kristian Skulberg (born 13 January 1951) is a Norwegian physician and politician. As former State Secretary in the Norwegian Ministry of Environment and in the Norwegian Ministry of Culture he has contributed within the field of heritage interpretation as basis for improved environmental management. Biography On January 13, 1951 Per Kristian Skulberg was born on Skulberg Farm in Spydeberg, Norway to Anton Skulberg and Randi Berg. His...

 

 

Кубок Північної Ірландії 2011—2012 Подробиці Дата проведення 17 вересня 2011 - 5 травня 2012 Кількість учасників 116 Призові місця  Чемпіон Лінфілд (42-й раз) Віцечемпіон Крузейдерс Статистика Зіграно матчів 119 Забито голів 493 (4.14 за матч) ← 2010—2011 2012—2013 → Кубок Північної Ірл...

 

 

BBC Hausa language services BBC HausaTypeRadio network and websiteCountryUnited KingdomAvailabilityInternationalOwnerBBCLaunch date13 March 1957Official websitewww.bbc.com/hausa/LanguageHausa BBC Hausa is the Hausa-language service of the BBC World Service meant primarily for Hausa-speaking communities in Nigeria, Ghana, Niger and the rest of Hausa speakers across West Africa. It is part of the BBC's foreign language output of 33 languages, of which five are African languages. The service inc...

Bendera Mongolia dengan wilayah-wilayah historis Wilayah yang diasosiasikan dengan konsep Mongolia Raya Pan-Mongolisme adalah gagasan iredentisme yang ingin menyatukan semua wilayah yang dihuni oleh bangsa Mongol. Wilayah yang diusulkan disebut Mongolia Raya (bahasa Mongol: Даяар Монгол, Dayaar Mongol) dan mencakup negara Mongolia modern,[1] wilayah Mongolia Dalam dan Dzungaria di Tiongkok, serta Buryatia di Rusia.[2] Kadang-kadang wilayah Tuva, Republik Altai, ...

 

 

AnjaliPoster promosional versi pengalihan bahasa HindiSutradara Mani Ratnam Produser G. Venkateswaran Ditulis oleh Mani Ratnam PemeranRaghuvaranRevathiShamiliPrabhuSaranya PonvannanTarunVishnuvardhanPenata musikIlaiyaraajaSinematograferMadhu AmbatPenyuntingB. LeninV. T. VijayanPerusahaanproduksiG. V. FilmsDistributorG. V. FilmsTanggal rilis12 Juli 1990Durasi150 menitNegara India Bahasa Tamil Pendapatankotor$2 juta Anjali adalah sebuah film fitur berbahasa Tamil 1990 yang disutradarai ol...

 

 

  Gran Premio de Aragón de 2014Detalles de carrera 14.ª prueba de 18de la Temporada 2014 del Campeonato. Datos generalesFecha 28 de septiembre de 2014Sede MotorLand AragónCircuitoTipo ylongitud Instalaciones Permanentes5.078 km / 3.155 miMotoGP Pole position Vuelta rápida Marc Márquez1:47.187[1]​ Jorge Lorenzo1:49.107[1]​ Podio Jorge Lorenzo Aleix Espargaró Cal Crutchlow Moto2 Pole position Vuelta rápida Maverick Viñales1:54.073[2]​ Thomas Lüthi1:54.2...

American actor (1889–1960) Walter CatlettCatlett in The Front Page (1931)BornWalter Leland Catlett(1889-02-04)February 4, 1889San Francisco, California, U.S.DiedNovember 14, 1960(1960-11-14) (aged 71)Woodland Hills, California, U.S.Resting placeHoly Cross Cemetery, Culver City, CaliforniaOccupationsActorcomedianYears active1906–1957Spouses Zanetta Watrous ​ ​(m. 1908; div. 1930)​ Ruth Verney ​(divorced)​...

 

 

Artikel bertopik bandar udara ini perlu dikembangkan agar dapat memenuhi kriteria sebagai entri Wikipedia.Bantulah untuk mengembangkan artikel ini. Jika tidak dikembangkan, artikel ini akan dihapus. Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Bandar Udara Pulau Panjang –...

 

 

Private university in Pampanga, Philippines This article relies excessively on references to primary sources. Please improve this article by adding secondary or tertiary sources. Find sources: University of the Assumption – news · newspapers · books · scholar · JSTOR (February 2013) (Learn how and when to remove this template message) University of the AssumptionPamantasang AssumptionThe oldest Archdiocesan Catholic UniversityFormer namesAssumption Jun...

BMP-1 BMP-1 eks-Irak yang ditangkap oleh pasukan AS di Irak selama Perang Teluk Pertama. Jenis Kendaraan penempur infanteri Negara asal  Uni Soviet Sejarah pemakaian Masa penggunaan 1966 – sekarang Digunakan oleh Uni Soviet, Rusia, Polandia, Mesir, Mongolia, Siria, RRC, Afghanistan, India, Irak, Jerman, Yunani, dan Swedia. Pada perang Lihat Sejarah penugasan dan Sejarah Pertempuran Sejarah produksi Perancang Pavel Isakov (Biro Rancang ChTZ)[1] Tahun 1961 –...

 

 

1963 science fiction novel by Clifford D. Simak Way Station First edition coverAuthorClifford D. SimakCover artistRonald FratellCountryUnited StatesLanguageEnglishGenreScience fictionPublisherDoubledayPublication date1963Media typePrint (hardback & paperback)ISBN978-0345284204 Way Station was serialized in Galaxy Science Fiction in 1963 as Here Gather the Stars Way Station is a 1963 science fiction novel by American writer Clifford D. Simak, originally published as Here Gather t...

 

 

Chinese geographer and traveller Xu XiakePortrait of Xu XiakeBornXu Hongzu5 January 1587Jiangsu, Ming ChinaDied8 March 1641 (aged 54)Ming ChinaOccupationExplorer Xu XiakeChinese徐霞客TranscriptionsStandard MandarinHanyu PinyinXú XiákèWade–GilesHsü2 Hsia2-k'o4IPA[ɕy̌ ɕjǎ.kʰɤ̂]Yue: CantoneseYale RomanizationChèui HàahhaakJyutpingCeoi4 Haa4-haak3IPA[tsʰɵy˩ haː˩.haːk̚˧] Former residence of Xu Xiake in Jiangyin Tomb of Xu Xiake In this Chinese name,...

Sufi Persian poetry book by Sanai Ghaznavi Traditional printing of Hadiqat al Haqiqa From article series about:Sanai(473–545 AH) Works Poetry Diwan Hadiqat al Haqiqa (525 AH) Tariq ut-tahqiq (528 AH) Seir al-Ebad elal-Ma'ad Karnameye Balkh Eshghnameh Aghlnameh Makatib Tahrimatal Ghalam Places Ghazni Balkh Sarakhs Herat Nishapur Mecca Peoples Soltan Mahmud Saboktagin Masoud Ibn Ebrahim Ghaznavi‌ (492–508 AH) Bahram-Shah of Ghazna (511–552 AH) Khajeh Asilol Molke Heravi LayKhar Ghavamod...

 

 

Category 1 Atlantic hurricane in 1969 Hurricane Martha Hurricane Martha just north of Panama on November 21Meteorological historyFormedNovember 21, 1969DissipatedNovember 25, 1969Category 1 hurricane1-minute sustained (SSHWS/NWS)Highest winds90 mph (150 km/h)Lowest pressure979 mbar (hPa); 28.91 inHgOverall effectsFatalities5 directDamage$30 million (1969 USD)Areas affectedPanama, Costa RicaIBTrACSPart of the 1969 Atlantic hurricane season Hurricane Martha was the...

 

 

2012 single by Drake featuring the WeekndCrew LoveSingle by Drake featuring the Weekndfrom the album Take Care ReleasedJuly 30, 2012 (2012-07-30)GenreAlternative R&BLength3:29LabelAspireYoung MoneyCash MoneyRepublicSongwriter(s)Aubrey GrahamAbel TesfayeCarlo MontagneseNoah ShebibAnthony PalmanProducer(s)Noah 40 ShebibIllangeloThe WeekndDrake singles chronology Amen (2012) Crew Love (2012) Enough Said (2012) The Weeknd singles chronology Crew Love(2012) Remember You(...

الحصان الأشهب The Pale Horse غلاف الرواية الذي نشرت به من طرف دار الأجيال. معلومات الكتاب المؤلف اغاثا كريستي. البلد المملكة المتحدة. اللغة الإنكليزية. الناشر نادي كولنز للجرائم. تاريخ النشر 6 نوفمبر 1961. النوع الأدبي رواية تحقيق. التقديم عدد الصفحات 256(النسخة الأصلية),287(الترجمة ال...

 

 

Questa voce sull'argomento hockeisti su ghiaccio svedesi è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Andreas Dackell Nazionalità  Svezia Altezza 178 cm Peso 88 kg Hockey su ghiaccio Termine carriera 2012 Palmarès Competizione Ori Argenti Bronzi Olimpiadi 1 0 0 Per maggiori dettagli vedi qui   Modifica dati su Wikidata · Manuale Andreas Lars Dackell (Gävle, 29 dicembre 1972) è un ex hockeista su ghiaccio svedese. Palmarès Olimpi...

 

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!