立方半八面體

立方半八面體
立方半八面體
類別均勻星形多面體
對偶多面體立方半無窮星形八面體
識別
名稱立方半八面體
參考索引U15, C51, W78
鮑爾斯縮寫
verse-and-dimensions的wikiaBowers acronym
cho
數學表示法
考克斯特符號
英语Coxeter-Dynkin diagram
label4-3 branch_10ru split2 node_1 
威佐夫符號
英语Wythoff symbol
4/3 4 | 3 (二重覆蓋
性質
10
24
頂點12
歐拉特徵數F=10, E=24, V=12 (χ=-2)
組成與佈局
面的種類6個四邊形{4}
4個六邊形{6}
面的佈局
英语Face configuration
6{4}+4{6}
頂點圖4.6.4/3.6
對稱性
對稱群Oh, [4,3], *432
特性
均勻
圖像
立體圖
4.6.4/3.6
頂點圖

立方半無窮星形八面體
對偶多面體

幾何學中,立方半八面體是一種非凸多面體,屬於星形多面體均勻多面體,也可以歸類在非凸均勻多面體,其索引在均勻多面中是U15[1]溫尼爾多面體模型中是W78[2]。立方半八面體外觀看起來像所有三角形面都凹進去的截半立方體[3]:78立方半八面體由6個正方形和4個正六邊形組成,是一種十面體,且每個頂點對應的角皆相等,因此也可以被歸類為擬正多面體[4],然而由於這個立體同時具備半多面體的特性,因此被部分學者分成一類新的立體,即擬正半多面體(Versi-Regular Polyhedra),這類立體共有九個,最早在1881年由亞伯特·巴杜羅(Albert Badoureau)發現並描述[5]

性質

立方半八面體共有10個、24條和12個頂點[6][7]。在其10個面中有6個正方形面和4個六邊形面。這6個正方形面的排列方式與截半立方體的六個正方形面相同[8]:108 。立方半八面體每個頂點都是2個正方形和2個六邊形的公共頂點。其中,有一個四邊形反向相接,使得其頂點圖為交叉四邊形,在頂點布局中,可以用4.6.4/3.6來描述。[9][6]

面的組成

立方半八面體由10個面組成,在其十個面中,有6個正方形面和4個六邊形面[10],其中的4個六邊形面互相相交,且皆穿過該立體的幾何中心[11]:57

二面角

八面半八面體二面角三平方根倒數反餘弦[12][13]

頂點座標

由於立方半八面體凸包截半立方體,因此其12頂點會與截半立方體相同,為(0, ±1, ±1)(±1, 0, ±1), (±1, ±1, 0),若邊長為a,則座標縮放倍。[14]

定向性

立方半八面體的表面是一個不可定向的曲面[6],即無法定義表面上特定點屬於內部或外部,因為任何點都可以在不打洞的情況下經由表面找到一個路徑連接該點對應的背面的位置,這個特性與克萊因瓶類似[15]

相關多面體

立方半八面體與截半立方體八面半八面體有著相同的頂點布局英语vertex arrangement稜布局英语edge arrangement[14]


截半立方體

立方半八面體

八面半八面體

截半四階六邊形鑲嵌

立方半八面體在拓樸上的展開圖可以排佈在頂點圖為4.6.4.6的截半四階六邊形鑲嵌上。可對應到截半的四階六邊形鑲嵌之半正則地區圖上。[10]

立方半無窮星形八面體

立方半無窮星形八面體
立方半八面體
類別無窮星形多面體
半多面體對偶
對偶多面體立方半八面體
識別
名稱立方半無窮星形八面體
參考索引DU15
性質
12
24
頂點10
歐拉特徵數F=12, E=24, V=10 (χ=-2)
對稱性
對稱群Oh, [4,3], *432

立方半無窮星形八面體是立方半八面體的對偶多面體,也是九個對偶半多面體之一[16]。其外觀難以與八面半無窮星形八面體區別。[17]

多面體
立方半八面體

八面半八面體
對偶多面體
立方半無窮星形八面體

八面半無窮星形八面體

從定義上來看,對偶多面體的面會與原始立體的頂點圖相同,同時頂點周圍之面的排列方式會和原始立體的面之邊相同,也就是說對偶多面體的頂點圖為原始立體的面[18]。由於立方半無窮星形八面體是立方半八面體的對偶多面體,而立方半八面體的12個頂點皆為4個面的公共頂點,因此立方半無窮星形八面體的面理應具有12個面,每個面由4個邊組成[19]。然而立方半八面體有部分面幾何中心落在整個立體的幾何中心上,因此其對偶多面體的頂點會落在無窮遠處,即無窮实射影平面上的點。[20]一般來說,這樣的立體無法被具象化[19]。為了具像化這種立體,溫尼爾在著作《對偶模型》中將其描述為由無限高的柱體組合構成的立體,在這樣的視覺化方式下,立方半八面體外觀為由4個無限高的六角柱構成的立體[20]。然而這樣的具象化結果會使得其外觀與八面半無窮星形八面體的具象化結果相同。[21]

半刻面立方體

半刻面立方體又稱為立方半菱形十二面體,是立方體的一種刻面英语Faceting結果,由6個長方形和6個交叉四邊形組成,並具有12個、24條和8個頂點,每個頂點都是3個長方形和3個交叉四邊形的公共頂點。其長方形面穿過立方體的幾何中心,因此其對偶多面體是一個位於实無窮射影平面的幾何結構。

五個半刻面立方體依照五複合立方體的組成方式形成的複合多面體稱為五複合半刻面立方體,或五複合立方半菱形十二面體,其對偶多面體為五複合立方半無窮星形菱形十二面體,為一種位於实無窮射影平面的星形二十面體[22]

參見

註釋

參考文獻

  1. ^ Cubohemioctahedron. 密西根州立大學圖書館. [2016-08-31]. (原始内容存档于2013-06-20). 
  2. ^ W78 Cubohemioctahedron. colinspics. [2016-08-31]. (原始内容存档于2016-08-31). 
  3. ^ Wenninger, M.J. Polyhedron Models. Cambridge University Press. 1974 [2021-09-06]. ISBN 9780521098595. LCCN 69010200. (原始内容存档于2021-08-31). 
  4. ^ George W. Hart. Quasi-Regular Polyhedra. 1996 [2021-09-05]. (原始内容存档于2021-08-30). 
  5. ^ Jean Paul Albert Badoureau. Mémoire sur les Figures Isocèles. Journal de l'École polytechnique. 1881, (49): 47-172. 
  6. ^ 6.0 6.1 6.2 Uniform Polyhedra 15: Cubohemioctahedron. mathconsult. [2016-08-31]. (原始内容存档于2016-03-27). 
  7. ^ Cubohemioctahedron. bulatov.org. [2016-08-31]. (原始内容存档于2016-04-01). 
  8. ^ Pisanski, T. and Servatius, B. Configurations from a Graphical Viewpoint. Birkhäuser Advanced Texts Basler Lehrbücher. Birkhäuser Boston. 2012 [2021-09-06]. ISBN 9780817683634. LCCN 2012944998. (原始内容存档于2021-09-06). 
  9. ^ Robert Webb. Cubohemioctahedron. software3d.com. [2021-09-06]. (原始内容存档于2020-03-29). 
  10. ^ 10.0 10.1 The cubohemioctahedron. Regular Map database - map details. [2021-07-24]. (原始内容存档于2021-08-02). 
  11. ^ Barnes, J. Gems of Geometry. SpringerLink: Bücher. Springer Berlin Heidelberg. 2012 [2021-09-06]. ISBN 9783642309649. LCCN 2012946175. (原始内容存档于2021-09-06). 
  12. ^ Versi-Regular Polyhedra: Cubohemioctahedron. dmccooey.com. [2016-08-31]. (原始内容存档于2016-03-24). 
  13. ^ Jean Paul Albert Badoureau, Mémoire sur les Figures Isocèles, Journal de l'École polytechnique 49 (1881), 47-172.
  14. ^ 14.0 14.1 Klitzing, Richard. cubohemioctahedron, cho. bendwavy.org. [2021-09-06]. (原始内容存档于2021-01-23). 
  15. ^ David I. McCooey. Versi-Regular Polyhedra. dmccooey.com. [2021-09-05]. (原始内容存档于2021-07-30). 
  16. ^ Magnus Wenninger英语Magnus J. Wenninger, Dual Models, Cambridge University Press, 1983, ISBN 978-0-521-54325-5, MR 0730208  (Page 101, Duals of the (nine) hemipolyhedra)
  17. ^ Weisstein, Eric W. (编). Cubohemioctahedron. at MathWorld--A Wolfram Web Resource. Wolfram Research, Inc. (英语). 
  18. ^ Weisstein, Eric W. (编). Dual Polyhedron. at MathWorld--A Wolfram Web Resource. Wolfram Research, Inc. (英语). 
  19. ^ 19.0 19.1 Vladimir Bulatov. hexahemioctacron. Polyhedra Collection, bulatov.org. [2021-07-30]. (原始内容存档于2020-02-23). 
  20. ^ 20.0 20.1 Wenninger, Magnus, Dual Models, Cambridge University Press, 2003 [1983], ISBN 978-0-521-54325-5, MR 0730208, doi:10.1017/CBO9780511569371  (Page 101, Duals of the (nine) hemipolyhedra)
  21. ^ Weisstein, Eric W. (编). Octahemioctacron. at MathWorld--A Wolfram Web Resource. Wolfram Research, Inc. (英语). 
  22. ^ Guy's polyhedra pages. Some lost stellations of the icosahedron. steelpillow. 2006年7月11日 [2019年5月31日]. (原始内容存档于2016年3月13日). 

外部連結

Read other articles:

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أبريل 2019) روجر نيكسون معلومات شخصية الميلاد 8 أغسطس 1921  تولاري، تولاري، كاليفورنيا  الوفاة 13 أكتوبر 2009 (88 سنة) [1]  بورلينغامي، سان ماتيو، كاليفورنيا  سبب ...

 

Para akademisi Stovia tahun 1916School tot Opleiding van Inlandsche Artsen (bahasa Indonesia: Sekolah Pendidikan Dokter Bumiputra), atau yang juga dikenal dengan singkatannya STOVIA, adalah sekolah untuk pendidikan dokter pribumi di Batavia pada zaman kolonial Hindia Belanda. Saat ini sekolah ini telah menjadi Fakultas Kedokteran Universitas Indonesia.[1] Sejarah pendirian Kekhawatiran akan kurangnya tenaga kesehatan untuk menghadapi berbagai macam penyakit berbahaya di wilayah-wilaya...

 

Die Bioverfügbarkeit ist eine pharmakologische Messgröße für den Anteil eines Wirkstoffes, der unverändert im Blutkreislauf zur Verfügung steht.[1] Sie gibt an, wie schnell und in welchem Umfang der Stoff (meistens Arzneistoff) aufgenommen (resorbiert) wird und unverändert am Wirkort zur Verfügung steht.[2][3] Bioverfügbarkeit nach intravenöser Gabe (per Definition 100 %, rot, i.v.) und nach oraler Gabe (schwarz, grau, p.o.): Sind die Flächen unter den ...

Christian Dobnik Informasi pribadiTanggal lahir 11 Juli 1986 (umur 37)Tempat lahir Klagenfurt, AustriaPosisi bermain KiperInformasi klubKlub saat ini Wolfsberger ACNomor 1Karier senior*Tahun Tim Tampil (Gol)2007–2008 FC Kärnten 21 (0)2008–2010 FC Lustenau 07 57 (0)2010– Wolfsberger AC 73 (0) * Penampilan dan gol di klub senior hanya dihitung dari liga domestik dan akurat per 16:24, 28 Juli 2012 (UTC) Christian Dobnik (lahir 11 Juli 1986) adalah pemain sepak bola asal Austria....

 

1985 single by The SmithsShakespeare's SisterSingle by The SmithsB-sideWhat She SaidStretch Out and WaitReleased18 March 1985RecordedJanuary 1985StudioUtopia Studios, Primrose Hill, LondonGenreRockabilly[1][2]Length2:09LabelRough TradeSongwriter(s)Johnny Marr, MorrisseyProducer(s)The SmithsThe Smiths singles chronology How Soon Is Now? (1985) Shakespeare's Sister (1985) Barbarism Begins at Home (1985) Shakespeare's Sister is a song by the English rock band the Smiths. Released...

 

This article is about the library in San Jose, California. For other uses, see Martin Luther King Jr. Library (disambiguation). Dr. Martin Luther King Jr. LibraryCampus entrance to the library37°20′08″N 121°53′06″W / 37.33545°N 121.88496°W / 37.33545; -121.88496Location150 E. San Fernando Street San Jose, California, United StatesTypePublicEstablished2003CollectionSize1.6 million volumesAccess and usePopulation servedCity of San JoseSan Jose State Universit...

Lijst van grootstedelijke agglomeraties in de Verenigde Staten naar inwonertal 1 - New York 2 - Los Angeles 3 - Chicago 4 - Houston 5 - Phoenix 6 - Philadelphia 7 - San Antonio 8 - San Diego 9 - Dallas 10 - San Jose 11 - Detroit 12 - Jacksonville 13 - Indianapolis 14 - San Francisco 15 - Columbus 16 - Austin 17 - Memphis 18 - Fort Worth 19 - Baltimore Dit artikel geeft een overzicht van 100 grootste steden in de Verenigde Staten naar inwonertal. De lijst is gebaseerd op gemeentelijke bestuurs...

 

New Zealand minister of the Crown Minister of DefenceCoat of arms of New ZealandFlag of New ZealandIncumbentJudith Collinssince 27 November 2023Ministry of DefenceStyleThe HonourableMember of Cabinet of New Zealand Executive Council Reports toPrime Minister of New ZealandAppointerGovernor-General of New ZealandTerm lengthAt His Majesty's pleasureFormation22 July 1862First holderReader WoodSalary$288,900[1]Websitewww.beehive.govt.nz Politics of New Zealand Constitution The Crown M...

 

Shopping mall in Queensland, AustraliaPacific Fair Shopping CentreThe new north-east mall at Pacific Fair Shopping Centre on the Gold Coast in Queensland at the completion of stage one of the redevelopmentLocationGold Coast, Queensland, AustraliaCoordinates28°02′12″S 153°25′39″E / 28.036683°S 153.427495°E / -28.036683; 153.427495Opening date1977; 46 years ago (1977)DeveloperAMP CapitalManagementThe GPT GroupOwnerCbus Property & UniSupe...

Archduke FelixBorn(1916-05-31)31 May 1916Schönbrunn Palace, Vienna, Austria-HungaryDied6 September 2011(2011-09-06) (aged 95)San Ángel, Mexico City, Mexico[1]BurialMuri Abbey, SwitzerlandSpousePrincess & Duchess Anna-Eugénie of ArenbergIssueMaria del PilarCarlos FelipeKingaRaimundMyriamIstvánViridisNamesFelix Friedrich August Maria vom Siege Franz Joseph Peter Karl Anton Robert Otto Pius Michael Benedikt Sebastian Ignatius Marcus d'AvianoHouseHabsburg-LorraineFatherCharle...

 

Senior advocate in the Supreme Court of India This article may have been created or edited in return for undisclosed payments, a violation of Wikipedia's terms of use. It may require cleanup to comply with Wikipedia's content policies, particularly neutral point of view. (January 2022) Gopal SubramaniumSolicitor GeneralIn officeJune 2009 – June 2011Preceded byGoolam Essaji VahanvatiSucceeded byRohinton Fali NarimanAdditional Solicitor GeneralIn office2005–2009 Personal detailsBor...

 

Museum in Greece around ancient Macedonian tombs Museum of the Royal Tombs of Aigai (Vergina)Entrance to the Royal Tombs of Aigai Museum in Vergina, GreeceEstablished1997LocationVergina, Central Macedonia, GreeceCoordinates40°29′N 22°19′E / 40.483°N 22.317°E / 40.483; 22.317TypeArchaeologicalWebsitehttps://www.aigai.gr/en/visit UNESCO World Heritage SiteOfficial nameArchaeological Site of Aigai (modern name Vergina)CriteriaCultural: i, iiiReference780Inscr...

Railway station in Eiheiji, Fukui Prefecture, Japan Shiizakai Station志比堺駅Shiizakai Station in May 2009General informationLocation3 Matsuoka-Shihizakai, Eiheiji-machi,Yoshida-gun, Fukui-ken 910-1111JapanCoordinates36°05′53″N 136°18′40″E / 36.097917°N 136.311111°E / 36.097917; 136.311111Operated byEchizen RailwayLine(s)■ Katsuyama Eiheiji Line Distance9.3 km from FukuiPlatforms2 side platformTracks1Other informationStatusUnstaffedStation codeE11Webs...

 

Rail-tie/sleeper binding mechanism Elements of a baseplate-based rail fastening system Screw for fixing plate to sleeperElastomeric pad supporting railTension washerRail clampTensioning bolt (nut not shown)Baseplate Unimog pushing a Spindle Precision Wrenching Unit used for automatic and synchronous tightening and loosening of rail fastenings Mabbett Railway Chair Manufacturing Company share certificate (1867) A rail fastening system is a means of fixing rails to railroad ties (North America)...

 

Ferreiros de Tendais Freguesia Ferreiros de TendaisLocalización de Ferreiros de Tendais en Portugal Coordenadas 41°02′53″N 8°02′38″O / 41.048055555556, -8.0438888888889Entidad Freguesia • País  Portugal • Concelho Cinfães • Distrito ViseuSuperficie   • Total 16,37 km²Población (2001)   • Total 802 hab. • Densidad 49,0 hab/km²[editar datos en Wikidata] Ferreiros de Tendais es una fregue...

2010 studio album by The Tony Danza Tapdance ExtravaganzaDanza III: The Series of Unfortunate EventsStudio album by The Tony Danza Tapdance ExtravaganzaReleasedJuly 6, 2010Genre Mathcore grindcore djent[1] Length58:57LabelBlack Market ActivitiesProducerJosh TravisThe Tony Danza Tapdance Extravaganza chronology Danza II: Electric Boogaloo(2007) Danza III: The Series of Unfortunate Events(2010) Danza IIII: The Alpha – The Omega(2012) Danza III: The Series of Unfortunate Events...

 

Burkinabé footballer (born 1991) Issoufou Dayo Dayo with Burkina Faso in 2022Personal informationFull name Issoufou Sellsavon DayoDate of birth (1991-08-06) 6 August 1991 (age 32)Place of birth Bobo-Dioulasso, Burkina FasoHeight 1.87 m (6 ft 2 in)Position(s) Centre-back[1]Team informationCurrent team RS BerkaneNumber 4Senior career*Years Team Apps (Gls)2011–2013 RC Bobo Dioulasso 2013–2014 Étoile Filante de Ouagadougou 2014–2016 AS Vita Club 2016– RS Berk...

 

This biography of a living person needs additional citations for verification. Please help by adding reliable sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately from the article and its talk page, especially if potentially libelous.Find sources: Grigory Marakutsa – news · newspapers · books · scholar · JSTOR (August 2009) (Learn how and when to remove this template message) Grigore Mărăc...

Soviet film camera series This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article is an orphan, as no other articles link to it. Please introduce links to this page from related articles; try the Find link tool for suggestions. (July 2023) This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by...

 

アンドラCF(英語版)とは異なります。 FCアンドラ原語表記 Futbol Club Andorra愛称 Els Tricolorsクラブカラー     青・    黄・    赤創設年 1942年所属リーグ セグンダ・ディビシオン所属ディビジョン 2部(2022-23)ホームタウン アンドラ・ラ・ベリャホームスタジアム エスタディ・ナシオナル収容人数 3,306代表者 ジェラール・ピケ (90%) グルー...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!