Leukocitna receptorska tirozinska kinaza
Leukocitna receptorska tirozinska kinaza je enzim koji je kod ljudi kodiran LTK genom.[1][2]
Protein kodiran ovim genom je član ALK/LTK receptorske familije receptorskih tirozinskih kinaza (RTK). Njegov ligand nije poznat.[3] Ovaj receptor je srodna sa insulinskom receptorskom familijom. Specifična tirozinska fosforilacija proteina je ključna za kontrolu raznovrsnih signalnih puteva, koji dovode do ćelijskog razvića i diferencijacije. Dve alternativno splajsovane transkriptne varijante koje kodiraju različite izoforme su poznate.[2]
Interakcije
LTK formira interakcije sa IRS-1, Shc, i PIK3R1.[4][5]
Reference
Literatura
- Krolewski JJ, Dalla-Favera R (1991). „The ltk gene encodes a novel receptor-type protein tyrosine kinase.”. Embo J. 10 (10): 2911–9. PMC 453005. PMID 1655406.
- Krolewski JJ, Lee R, Eddy R, et al. (1990). „Identification and chromosomal mapping of new human tyrosine kinase genes.”. Oncogene 5 (3): 277–82. PMID 2156206.
- Ben-Neriah Y, Bauskin AR (1988). „Leukocytes express a novel gene encoding a putative transmembrane protein-kinase devoid of an extracellular domain.”. Nature 333 (6174): 672–6. DOI:10.1038/333672a0. PMID 2836739.
- Toyoshima H, Kozutsumi H, Maru Y, et al. (1993). „Differently spliced cDNAs of human leukocyte tyrosine kinase receptor tyrosine kinase predict receptor proteins with and without a tyrosine kinase domain and a soluble receptor protein.”. Proc. Natl. Acad. Sci. U.S.A. 90 (12): 5404–8. DOI:10.1073/pnas.90.12.5404. PMC 46728. PMID 7685902.
- Richard I, Broux O, Chiannilkulchai N, et al. (1995). „Regional localization of human chromosome 15 loci.”. Genomics 23 (3): 619–27. DOI:10.1006/geno.1994.1550. PMID 7851890.
- Kozutsumi H, Toyoshima H, Hagiwara K, et al. (1994). „Human ltk receptor tyrosine kinase binds to PLC-gamma 1, PI3-K, GAP and Raf-1 in vivo.”. Oncogene 9 (10): 2991–8. PMID 8084603.
- Kozutsumi H, Toyoshima H, Hagiwara K, et al. (1993). „Identification of the human ltk gene product in placenta and hematopoietic cell lines.”. Biochem. Biophys. Res. Commun. 190 (2): 674–9. DOI:10.1006/bbrc.1993.1101. PMID 8427607.
- Ueno H, Sasaki K, Kozutsumi H, et al. (1996). „Growth and survival signals transmitted via two distinct NPXY motifs within leukocyte tyrosine kinase, an insulin receptor-related tyrosine kinase.”. J. Biol. Chem. 271 (44): 27707–14. DOI:10.1074/jbc.271.44.27707. PMID 8910363.
- Snijders AJ, Ho SC, Haase VH, et al. (1997). „A lymphocyte-specific Ltk tyrosine kinase isoform is retained in the endoplasmic reticulum in association with calnexin.”. J. Biol. Chem. 272 (2): 1297–301. DOI:10.1074/jbc.272.2.1297. PMID 8995435.
- Ueno H, Honda H, Nakamoto T, et al. (1997). „The phosphatidylinositol 3' kinase pathway is required for the survival signal of leukocyte tyrosine kinase.”. Oncogene 14 (25): 3067–72. DOI:10.1038/sj.onc.1201153. PMID 9223670.
- Espanel X, Huguenin-Reggiani M, Van Huijsduijnen RH (2003). „The SPOT technique as a tool for studying protein tyrosine phosphatase substrate specificities.”. Protein Sci. 11 (10): 2326–34. DOI:10.1110/ps.0213402. PMC 2373693. PMID 12237455.
- Strausberg RL, Feingold EA, Grouse LH, et al. (2003). „Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences.”. Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. DOI:10.1073/pnas.242603899. PMC 139241. PMID 12477932.
- Li N, Nakamura K, Jiang Y, et al. (2004). „Gain-of-function polymorphism in mouse and human Ltk: implications for the pathogenesis of systemic lupus erythematosus.”. Hum. Mol. Genet. 13 (2): 171–9. DOI:10.1093/hmg/ddh020. PMID 14695357.
|
|