வனேடியம் (ஆங்கிலம்: Vanadium, (IPA: /vəˈneɪdiəm/) என்னும் வெண்-சாம்பல் நிற வேதிப்பொருள் உலகில் அதிக அளவில் காணப்படாத, மென்மையான, வளையக்கூடிய, தகடாககூடிய மாழை ஆகும். இத் தனிமத்தின்அணுவெண் 23 ஆகும். இது இயற்கையில் கிடைக்கும் கனிமப்பொருட்களில் இருந்து பிரிக்கப்படுவது. வனேடியம் பெரும்பாலான உயிரினங்களில் இருக்கும் 26 தனிமங்களில் ஒன்றாகும். இது பெரும்பாலும் பிற மாழைகளுடன் கலந்து மாழைக்கலவையாகப் பயன்படுகின்றது.
வனேடியம், கார்னோடைட், ரோச்கோலைட், வனாடினைட், பாட்ரோனைட், போன்று 65 வகையான தாதுக்களில் கிடைக்கின்றது.[1] பாஸ்பேட் பாறை மற்றும் ஒரு சில இரும்புத் தாதுக்களிலும் காணப்படுகின்றது. கச்சா எண்ணெயில் கனிம -கரிம மூலக் கூறுகளாகவும் உள்ளது. வனேடியத் தாதுக்கள் அமெரிக்கா, ரஷ்யா,பின்லாந்து, தென் ஆப்பிரிக்கா, வாடா ரொடீசியா, பெரு, வெனிசுலா, பிரான்சு போன்ற நாடுகளில் அதிகம் கிடைக்கின்றது.[2] மக்னீசியம் அல்லது மக்னீசியம்- சோடியக் கலவையால் வனேடியம் ட்ரை குளோரைடை ஆக்ஸிஜனீக்க வினைக்கு உட்படுத்தி, தூய வனேடியத்தைப் பெறலாம். இயற்கையில் காணப்படும் வனேடியத்தில், ௦.24 விழுக்காடு வனேடியம்-50 ம் , 99.76 விழுக்காடு வனேடியம்-51ம் உள்ளன.[3] இதில் வனேடியம்-50 கதிரியக்கமுடையது. இதன் அரை வாழ்வு 6 x 1015 ஆண்டுகள். பூமியின் புறவோட்டுப் பகுதியில் இதன் செழுமை ௦.02 விழுக்காடாகும். இது ஈயத்தின் செழுமையை விட 15 மடங்கும் வெள்ளியின் செழுமையை விட 2000 மடங்கும் அதிகமானது.
எரிகற்களில் வனேடியத்தின் செழுமை அதிகமுள்ளது.[4] முதிர்ந்த உறுதியான மரங்களின் அடிப்பகுதிகளில் வனேடிய உப்புகள் உள்ளன. கடல் தாவர இனங்களிலும், கடல் வாழ் உயிரினகளின் உடலிலும் வனேடியம் அதிகம் இருக்கின்றது.[5] வனேடியம் உயிரினகளின் வளர் சிதை மாற்ற வினைகளில் வினையூக்கியாகச் செயல்படுகின்றது. ஜப்பான் நாட்டில் அசிடியா (ascidia) என்ற கடல் வாழ் சிற்றுயிரியின் பண்ணைகளை அமைந்து அதன் உடலில் செறிவுற்றுள்ள 18.5 சதவீதம் வனேடியத்தைப் பிரித்தெடுக்க முயன்று வருகின்றார்கள். மரப் பிசின்களின் உதவியுடன் அயனிப் பரிமாற்ற வினை வழி வனேடியத்தைப் பிரித்தெடுக்கும் நவீன முறையை அமெரிக்கர்கள் கையாளுகின்றார்கள்
பண்புகள்
வனேடியத்தின் வேதிக் குறியீடு V ஆகும். இதன் அணுவெண் 23; அணு எடை 50 94; ,அடர்த்தி 5960 கிகி /கமீ; உருகு நிலையும்,கொதி நிலையும் முறையே 2193 K , 3673 K ஆக உள்ளன. தூய வனேடியம் பளபளப்புடன் கூடிய சாம்பல் நிற உலோகமாகும். இது மென்மையானது, கம்பியாகவும் இழுக்கக் கூடியது.[6][7] வனேடியம் பலவகையான காரக் கரைசல்கள் மற்றும் கந்தக அமிலம், ஹைட்ரோகுளோரிக் அமிலம், உப்பு நீர் முதலியவற்றால் தாக்குறாது (அரிப்பு ஏற்படாமல்) இருக்கின்றது.[8] ஆனால் 930 K க்கு மேல் உடனடியாக ஆக்சிஜனேற்றம் பெறுகிறது. உயர் வெப்ப நிலையில் அலோகங்களுடன் வினை புரிகிறது. நைட்ரஜன், ஆக்சிஜன், ஹைட்ரஜன் போன்ற தனிமங்கள் சிறிதளவே சேர்ந்த போதும், வனேடியம் ஒரு கடினப் பொருளாகி எளிதில் உடையக் கூடியதாகி விடுகின்றது.
இது மாழை வகையைச் சேர்ந்ததாயினும் குரோமியம் மற்றும் மாங்கனீசு போன்று இதன் ஆக்ஸைடுகள் காடித் தன்மை உடையன. வனேடியத்தின் பொதுவான ஆக்ஸைடு நிலைகளில் +2, +3, +4, +5 ஆகியனவும் அடங்கும். அமோனியம் வனடடேட் NH4VO3 ஐக் கொண்டு செய்து காட்டப்படும் ஒரு சோதனையில், துத்தநாகத்தால் சிதைவுற்று வனேடியத்தின் நான்கு ஆக்ஸைடு நிலைகளையும் வெவேறு நிறம் தருவதால் காட்டமுடியும். பொதுவாக +1 ஆக்ஸைடு நிலை நிகழ்வது அரிது.[8]
வரலாறு
1801 ஆம் ஆண்டில் மெக்சிகோ பல்கலைக் கழகத்தைச் சேர்ந்த ஆண்டரஸ் மானுவெல் டெல்ரியோ அந்நாட்டில் கிடைத்த ஒரு கனிமப் பொருளை பகுத்தாராய்ந்து அதில் ஒரு புதிய தனிமம் இருபதைக் கண்டுபிடித்தார். வேதி வினைகளின் போது இது பன்னிற வேதிச் சேர்மங்களை ஏற்படுத்தியதால் அதைப் பான்குரோமியம் என அப்போது குறிப்பிட்டார். இச் சொல் பன்னிறங்களைச் சுட்டும் கிரேக்க மொழிச் சொல்லாகும். அதன் பிறகு அவரே சிவப்பு என்ற பொருள் தரக்கூடிய கிரேக்க மொழிச் சொல்லான எரித்ரோனியம்(erytronium) என்ற சொல்லைத் தேர்வு செய்தார்.[9] இப் புதிய உலோகத்தின் பல வேதிச் சேர்மங்கள் சூடுபடுத்தும் போது சிவப்பாகி விடுகிறது என்ற கண்டுபிடிப்பே இப் பெயரைச் சூட்டுமாறு தூண்டியது. ஆனால் ”வோலர்” என்ற பிரஞ்சு நாட்டு விஞ்ஞானி இது தூய்மையற்ற குரோமியம் என்று தெரிவித்தார்.[10] அதன் பிறகு 1830 ல் இதே தனிமம் வனேடியம் என்ற புதிய பெயருடன் "நில்ஸ் செப் ஸ்ட்ரோம்" என்பாரால் மீண்டும் கண்டுபிடிக்கப் பட்டது. வனாடிஸ் என்பது ஸ்காண்டிநேவியர்களின் பெண் கடவுள்.[10] 1867 ல் இங்கிலாந்து நாட்டு வேதியியலார் ஹென்றி ரோஸ்கோ தூய வனேடியத்தைப் பிரித்தெடுப்பதில் வெற்றி கண்டார். ஹைட்ரஜன் மூலம் குளோரைடுகளை அகற்றி 99.8 விழுக்காடு தூய்மையான வனேடியத்தைப் பெற்றார்.[11]
பயன்பாடுகள்
உற்பத்தி செய்யப்படும் வனேடியத்தில் ஏறத்தாழ 80% வனேடியம், இரும்பு-எஃகில் கூட்டுப்பொருளாகப் பயன்படுவதற்கு செலவாகின்றது.[12]
சிறிதளவு வனேடியம் எவர்சில்வர் எனப்படும் துருப்பிடிக்கா எஃகிலும்[13] (அறுவை மருத்துவம், கருவிகள் முதலியவை), துருப்பிடிக்கா, மிகுவிரைவில் இயங்கும் கருவிகளிலும் பயன்படுகின்றது.[14]
வனேடியம் டை-ஆக்ஸைடு (VO2) பூசப்பட்ட கண்ணாடிகள் கண்ணுக்குப் புலப்படா அகச்சிவப்பு அலைகளைத் தடுக்கும் ஆனால் கண்ணுக்குப் புலப்படும் ஒளியைத் தடுப்பதில்லை (ஒரு குறிப்பிட்ட வெப்பநிலையில்).[23]
மின்கலங்களிலும் மின் ஆற்றல் கலங்களிலும் (Electrical fuel cells) பயன்படுகின்றது.[24]
பழங்காலத்தில் தென் இந்தியாவில் செய்த வூட்ஸ் எஃகு (Wootz) என்னும் வலுமிக்க எஃகில் பயன்படுத்தப்பட்டிருக்கலாம் எனவும் கருதப்படுகின்றது.[25] (இதுவே டமாஸ்க்கஸ் எஃகு (Dmamascus steel) எனப்பட்டது.)
↑Cowley, C. R.; Elste, G. H.; Urbanski, J. L. (1978). "Vanadium abundances in early A stars". Astronomical Society of the Pacific90: 536. doi:10.1086/130379. Bibcode: 1978PASP...90..536C.
↑Anke, Manfred (2004). "Vanadium – An element both essential and toxic to plants, animals and humans?". Anal. Real Acad. Nac. Farm.70: 961.
↑ 8.08.1Holleman, Arnold F. (1985). "Vanadium". Lehrbuch der Anorganischen Chemie (in German) (91–100 ed.). Walter de Gruyter. pp. 1071–1075. பன்னாட்டுத் தரப்புத்தக எண்3-11-007511-3. {{cite book}}: Unknown parameter |coauthors= ignored (help)CS1 maint: unrecognized language (link)
↑Cintas, Pedro (2004). "The Road to Chemical Names and Eponyms: Discovery, Priority, and Credit". Angewandte Chemie International Edition43 (44): 5888–94. doi:10.1002/anie.200330074. பப்மெட்:15376297.
↑Matsui, H.; Fukumoto, K.; Smith, D. L.; Chung, Hee M.; Witzenburg, W. van; Votinov, S. N. (1996). "Status of vanadium alloys for fusion reactors". Journal of Nuclear Materials233–237 (1): 92–99. doi:10.1016/S0022-3115(96)00331-5. Bibcode: 1996JNuM..233...92M.
↑"Vanadium Data Sheet"(PDF). Allegheny Technologies – Wah Chang. பார்க்கப்பட்ட நாள் 2009-01-16.
↑Markiewicz, W.; Mains, E.; Vankeuren, R.; Wilcox, R.; Rosner, C.; Inoue, H.; Hayashi, C.; Tachikawa, K. (1977). "A 17.5 Tesla superconducting concentric Nb3Sn and V3Ga magnet system". IEEE Transactions on Magnetics13 (1): 35–37. doi:10.1109/TMAG.1977.1059431. Bibcode: 1977ITM....13...35M.
↑Eriksen, K. M.; Karydis, D. A.; Boghosian, S.; Fehrmann, R. (1995). "Deactivation and Compound Formation in Sulfuric-Acid Catalysts and Model Systems". Journal of Catalysis155 (1): 32–42. doi:10.1006/jcat.1995.1185.
↑Manning, Troy D.; Parkin, Ivan P.; Clark, Robin J. H.; Sheel, David; Pemble, Martyn E.; Vernadou, Dimitra (2002). "Intelligent window coatings: atmospheric pressure chemical vapour deposition of vanadium oxides". Journal of Materials Chemistry12 (10): 2936–2939. doi:10.1039/b205427m.
↑Joerissen, Ludwig; Garche, Juergen; Fabjan, Ch.; Tomazic G. (2004). "Possible use of vanadium redox-flow batteries for energy storage in small grids and stand-alone photovoltaic systems". Journal of Power Sources127 (1–2): 98–104. doi:10.1016/j.jpowsour.2003.09.066.
↑Verhoeven, J. D.; Pendray, A. H.; Dauksch, W. E. (1998). "The key role of impurities in ancient damascus steel blades". Journal of the Minerals, Metals and Materials Society50 (9): 58–64. doi:10.1007/s11837-998-0419-y. Bibcode: 1998JOM....50i..58V.