ஒட்சிசன்

ஆக்சிசன்
8O
-

O

S
நைட்ரசன்ஆக்சிசன்புளோரின்
தோற்றம்
நிறமிலி வளிமம்; வெளிர்நீல நீர்மம். இப்படத்தில் ஒக்சிசன் குமிழிகள் திரவ ஒக்சிசனிலிருந்து மேலெழுகின்றன.

ஆக்சிசனின் நிறமாலைக் கோடுகள்
பொதுப் பண்புகள்
பெயர், குறியீடு, எண் ஆக்சிசன், O, 8
உச்சரிப்பு /ˈɒks[invalid input: 'ɨ']ən/ OK-si-jən
தனிம வகை அலோகம், உயிர்வளிக்குழு
நெடுங்குழு, கிடை வரிசை, குழு 162, p
நியம அணு நிறை
(அணுத்திணிவு)
15.9994(3)
இலத்திரன் அமைப்பு 1s2 2s2 2p4
2, 6
Electron shells of oxygen (2, 6)
Electron shells of oxygen (2, 6)
வரலாறு
கண்டுபிடிப்பு கா. வி. ஷீலே (1772)
பெயரிட்டவர் அ. இலவாசியே (1777)
இயற்பியற் பண்புகள்
நிலை வளிமம்
அடர்த்தி (0 °C, 101.325 kPa)
1.429 g/L
திரவத்தின் அடர்த்தி கொ.நி.யில் 1.141 g·cm−3
உருகுநிலை 54.36 K, -218.79 °C, -361.82 °F
கொதிநிலை 90.20 K, -182.95 °C, -297.31 °F
மாறுநிலை 154.59 K, 5.043 MPa
உருகலின் வெப்ப ஆற்றல் (O2) 0.444 கி.யூல்·மோல்−1
வளிமமாக்கலின் வெப்ப ஆற்றல் (O2) 6.82 கி.யூல்·மோல்−1
வெப்பக் கொண்மை (O2)
29.378 யூல்.மோல்−1·K−1
ஆவி அழுத்தம்
P (Pa) 1 10 100 1 k 10 k 100 k
at T (K)       61 73 90
அணுப் பண்புகள்
ஒக்சியேற்ற நிலைகள் 2, 1, −1, −2
மின்னெதிர்த்தன்மை 3.44 (பாலிங் அளவையில்)
மின்மமாக்கும் ஆற்றல்
(மேலும்)
1வது: 1313.9 kJ·mol−1
2வது: 3388.3 kJ·mol−1
3வது: 5300.5 kJ·mol−1
பங்கீட்டு ஆரை 66±2 pm
வான்டர் வாலின் ஆரை 152 பிமீ
பிற பண்புகள்
படிக அமைப்பு கனசதுரம்
ஆக்சிசன் has a கனசதுரம் crystal structure
காந்த சீரமைவு நிலைபெறா காந்தம்
வெப்ப கடத்துத் திறன் 26.58x10-3  W·m−1·K−1
ஒலியின் வேகம் (gas, 27 °C) 330 மீ.செ−1]]
CAS எண் 7782-44-7
மிக உறுதியான ஓரிடத்தான்கள் (சமதானிகள்)
முதன்மைக் கட்டுரை: ஆக்சிசன் இன் ஓரிடத்தான்
iso NA அரைவாழ்வு DM DE (MeV) DP
16O 99.76% O ஆனது 8 நொதுமிகளுடன் நிலைப்பெற்றுள்ளது
17O 0.039% O ஆனது 9 நொதுமிகளுடன் நிலைப்பெற்றுள்ளது
18O 0.201% O ஆனது 10 நொதுமிகளுடன் நிலைப்பெற்றுள்ளது
·சா
ஆக்சிசன் மின்னிறக்கு குழாயில் நீலவெண்மை ஒளிர்வு.

ஆக்சிசன் அல்லது ஒட்சிசன் (Oxygen), நாம் வாழும் நில உலகத்தில் யாவற்றினும் மிக அதிகமாகக் கிடைக்கும் தனிம வேதிப் பொருள். வேதியியலில் இதற்கான குறியீடு  O ஆகும். ஓர் ஆக்சிசன் அணுவின் கருவினுள்ளே 8 நேர்மின்னிகளும் அதற்கு இணையாக கருவைச்சுற்றி 8 எதிர்மின்னிகளும் பல்வேறு சுழல் பாதைகளில் சுழன்றும் வருகின்றன. எனவே ஆக்சிசனின் அணு எண் 8. ஆகும். அணுக்கருவினுள் நேர்மின்னிகள் அன்றி 8 நொதுமிகளும் (நியூட்ரான்களும்) உள்ளன.

இது தனிம அட்டவணையில் நெடுங்குழு 16 தனிமங்கள் குழுவின் அங்கமாகும். உயரிய வினையாற்றும் அலோக தனிமமும் ஆக்சிசனேற்றியுமான ஆக்சிசன் பெரும்பாலான தனிமங்களுடன் எளிதாக சேர்மங்களை (குறிப்பாக ஆக்சைடுகளை) உருவாக்குகின்றது.[1] திணிவின் அடிப்படையில், அண்டத்தில் மிகவும் செழுமையாக உள்ள வேதித் தனிமங்களில் நீரியம், ஈலியம் அடுத்து மூன்றாவதாக உள்ளது.[2] திட்ட வெப்ப அழுத்தத்தில், இத்தனிமத்தின் இரு அணுக்கள் பிணைந்து டையாக்சிசன் என்ற ஈரணு மூலக்கூற்று வளிமமாக விளங்குகின்றது; இந்நிலையில் இதற்கு வண்ணம், வாசனை, சுவை எதுவும் இல்லை. இந்நிலையின் வேதியியல் குறியீடு O
2
ஆகும்.

வளி மண்டலக் காற்றில் நைட்ரசனுக்கு அடுத்து செழிப்புற்றிருப்பது ஆக்சிசன். இது பெரும்பாலும் பிற தனிமங்களோடு இணைந்த நிலையிலேயே நில உலகத்தில் கிடைக்கின்றது. இதன் செழுமை (பரும அளவில்) 20.95 விழுக்காடு.[3][4][5] நீர் மண்டலப் பகுதியில் ஆக்சிசனின் செழுமை (எடை அளவில்) 85.89 விழுக்காடு.[3] பூமியின் மேலோட்டுப் பகுதியில் கிடைக்கும் கனிமங்களில் ஆக்சைடாகக் கிடைக்கிறது.[6] அந்த வகையில் இதன் செழுமை (எடை அளவில்) 49.13 விழுக்காடு.[7] மனித உடலில் 3 ல் 2 பங்கும், நீரில் பத்தில் 9 பங்கும் ஆக்சிசனாகும்.

வாழும் உயிரினங்களில் காணப்படும் புரதங்கள், கருவமிலங்கள், கார்போவைதரேட்டுக்கள், கொழுப்புக்கள் போன்ற கரிம மூலக்கூறுகளில் ஆக்சிசன் உள்ளது; அதேபோல, விலங்குகளின் கூடுகள், பற்கள், எலும்புகள் ஆகியவற்றில் உள்ள முக்கிய அனங்கக சேர்மங்களிலும் ஆக்சிசன் உள்ளது. மேலும் உயிரினங்களின் திணிவில், பெரும்பகுதி நீராக இருப்பதால் (காட்டாக மனித உடலில் மூன்றில் இரண்டு பங்கு நீராகும்) ஆக்சிசன் இருக்கின்றது. ஆக்சிசன் தனிமத்தை நீலப்பச்சைப்பாசி, பாசி மற்றும் தாவரங்கள் உருவாக்குகின்றன; அனைத்துயிர் உயிரணு ஆற்றல் பரிமாற்றங்களிலும் ஆக்சிசன் பயன்படுத்தப்படுகின்றது.

நில உருண்டையின் காற்று மண்டலத்தில் உள்ள வளிமங்களில் முக்கியமான இரண்டு வளிமங்களில் ஆக்சிசன் ஒன்றாகும் (மற்றது நைட்ரசன்). உயிரினங்களின் உயிர்வாழ்வுக்கும் மிக இன்றியமையாது தேவைப்படுவது இந்த ஆக்சிசன். இதனால் இது உயிர்வளி என்றும் பிராணவாயு என்றும் அழைக்கப்படுகிறது. எனினும், நிலவுருண்டையின் வரலாற்றில் தொல்பழங்காலத்தில் ( சுமார் 2.5 பில்லியன் ஆண்டுகளுக்கு முன்) இருந்த உயிரினங்களுக்கு ஆக்சிசன் ஒரு நச்சுப் பொருளாக இருந்தது. அன்றிருந்த உயிரினங்களுக்கு ஆக்சிசன் தேவை இல்லாமல் இருந்தன. ஆனால் சில வகையான நுண்ணுயிரிகளின் நுண்ணுடலின் இயக்கத்தின் விளைவால் ஆக்சிசன் வெளிவிடப்பட்டது. இப்படி ஆக்சிசன் அதிகம் வெளியிடப்பட்டதால் அன்றிருந்த உயிரினங்கள் மாய்ந்தன என்றும் அறிஞர்கள் கருதுகின்றார்கள்[8],[9] பிற்காலத்தில் நில உலகத்தில் ஆக்சிசனின் அளவு கூடியதற்குக் காரணம், ஒளிச்சேர்க்கை வழி ஆற்றல் பெற்று ஆக்சிசனை வெளிவிடும் நுண்ணுயிர்களின் இயக்கத்தால்தான்[10] (பார்க்க: ஒளிச்சேர்க்கை நுண்ணுயிரிகள்). இவ்வகையான ஒளிச்சேர்க்கை நுண்ணுயிரிகளும் பாசி போன்ற எளிய நிலைத்திணை வகைகளும்தான் நிலவுலகில் உள்ள ஆக்சிசனில் முக்கால் பங்கை (3/4) ஆக்கித்தருகின்றன.[11] [12] மீதமுள்ள கால் பங்கை (1/4) மரஞ்செடிகொடி வகைகள் ஆக்குகின்றன.[13]

கார்பன் டை ஆக்சைடு + நீர் + சூரியஒளிமாப்பொருள் + ஆக்சிசன்.[14]

பெரும்பாலான உயிரினங்கள் மூச்சு விடும்போது ஆக்சிசன் பயன்படுத்தப்படுவதால் அவை உயிர்வாழத் மிகத் தேவையான ஒன்றாக விளங்குகிறது. இருப்பினும் மிகவும் வீரியமான வேதிவினையாற்றும் இத்தனிமம் தனிநிலையில் நிலைத்தில்லாமையால் புவியின் வளிமண்டலத்தில் கிடைப்பதற்கு சில உயிரினங்கள் சூரிய ஒளியைப் பயன்படுத்தி தொடர்ந்து ஒளித்தொகுத்தல் வினையாற்றி நீரிலிருந்து மீளுருவாக்க வேண்டியுள்ளது. ஆக்சிசனின் மற்றொரு தனிமப் புறவேற்றுருவான ஓசோன் (O
3
) புற ஊதாக் கதிர் வீச்சை உள்வாங்கிக் கொள்வதன் விளைவாக மீயுயரத்தில் உள்ள கமழிப் படலம் உலகத்தை புற ஊதாக் கதிர் தாக்குதலிலிருந்து காக்கின்றது. ஆனால் புவியின் தரையருகே ஓசோன் ஓர் மாசுபொருளாக விளங்குகிறது. இதனினும் உயரத்தில் உள்ள பூமியின் தாழ் வட்டப்பாதை உயரங்களில், குறிப்பிடத்தக்க எண்ணிக்கையிலுள்ள ஆக்சிசன் அணுக்கள் விண்கலங்களின் அரிப்பிற்கு காரணமாகின்றன.[15] நீர்மநிலை காற்றை பகுதிபடக் காய்ச்சி வடிப்பு, செயோலைற்றுகளைப் பயன்படுத்தி அழுத்த-சுழற்சி மூலம் காற்றிலிருந்து ஆக்சனை செறிவுறுத்தல், நீரின் மின்னாற்பகுப்பு மற்றும் பிற முறைகளில் தொழில்முறையில் ஆக்சிசன் தயாரிக்கப்படுகிறது. இது எஃகு, நெகிழி, துணி தயாரிப்பு, இரும்பு மற்றும் பிற உலோகங்களை ஆக்சி-எரிபொருள் பற்ற வைத்தல், வெட்டுதல், ஏவூர்தி உந்துகை, ஆக்சிசன் சிகிட்சை போன்றவற்றில் பயன்படுத்தப்படுகின்றது. தவிரவும் வானூர்தி, நீர்மூழ்கிக் கப்பல், மனித விண்வெளிப்பறப்பு மற்றும் தாவுதலிலும் உயிர்தாங்கி அமைப்பாக பயன்படுத்தப்படுகின்றது.

ஆக்சிசனை 1773 அல்லது அதற்கு முன்பாகவே உப்சாலாவில் கார்ல் வில்லியம் சீலேயும், 1774இல் சோசப்பு பிரீசிட்லியும் தனித்தனியே கண்டறிந்தனர்; இருப்பினும் பிரீசிட்லியே தனது கண்டுபிடிப்பை முதலில் பதிப்பித்ததால் அவருக்கு முன்னுரிமை கொடுக்கப்படுகிறது. ஆக்சிசன் என்ற பெயர் 1777இல் அந்துவான் இலவாசியேயால் கொடுக்கப்பட்டது.[16]

தோற்றம்

பூமியின் உயிர்க்கோளத்தில் உள்ள காற்று, கடல் மற்றும் நிலம் ஆகியவற்றில் மிக அதிகமான நிறை அளவில் காணப்படும் வேதியியல் தனிமம் ஆக்சிசன் ஆகும். ஐதரசன் மற்றும் ஈலியம் வாயுக்களை அடுத்து பிரபஞ்சத்தில் மூன்றாவது மிக அதிகமான அளவில் காணப்படும் வேதியியல் தனிமமும் ஆக்சிசன் ஆகும்[2]. சூரியனின் நிறையில் 0.9% ஆக்சிசனாகும்[3]. புவியின் மேற்பரப்பு அதன் நிறையளவில் 49.2% சிலிக்கன் டையாக்சைடு போன்ற ஆக்சைடு சேர்மங்களாக காணப்படுகிறது [7] . பூமியின் மேற்பரப்பில் அதிகமாகக் கிடைக்கும் தனிமங்களில் ஆக்சிசனும் ஒன்றாகும். உலகத்தில் காணப்படும் கடல்கள் அனைத்திலும் காணப்படும் பொருள்களின் நிறையில் 88.8% ஆக்சிசன் பகுதிப்பொருளாக உள்ளது[3]. பூமியின் வளிமண்டலத்தில் ஆக்சிசன் வாயு இரண்டாவது மிக பொதுவான பகுதிக்கூறு ஆகும், இதன் கன அளவில் 20.8% மற்றும் அதன் மொத்த நிறையில் 23.1% ஆக்சிசன் ஆகும். (சில 1015 டன்கள்) [3][4][a]. வளிமண்டலத்தில் ஆக்சிசன் வாயு மிகவும் உயர்ந்த செறிவைக் கொண்டிருப்பதால், சூரிய குடும்பத்தில் உள்ள கிரகங்களில் பூமி அசாதாரணமான கிரகமாகக் கருதப்படுகிறது. செவ்வாய் கிரகம் அதன் கன அளவில் 0.1% ஆக்சிசனைக் கொண்டுள்ளது. வெள்ளி கிரகத்தில் இதைவிடக் குறைவான அளவிலும் ஆக்சிசன் காணப்படுகிறது. ஆக்சிசனைக் கொண்டுள்ள கார்பன் டை ஆக்சைடு போன்ற மூலக்கூறுகளின் மீது புற ஊதா கதிர்கள் வினைபுரிந்த காரணத்தால் இக்கிரகங்களைச் சூழ்ந்துள்ள ஆக்சிசன் வாயு தோன்றியிருப்பதாகக் கூறப்படுகிறது.

ஆக்சிசன் சுழற்சியின் விளைவாகவே பூமியில் அதிகப்படியான ஆக்சிசன் அடர்த்தி காணப்படுகிறது. பூமிக்குள்ளும் பூமியிலுள்ள மூன்று முக்கிய களஞ்ச்சியங்களான வளிமண்டலம், உயிர்க்கோளம், கற்கோளத்திலும் ஆக்சிசன் வாயுவின் இயக்கத்தினை இந்த உயிர்வேதியியல் சுழற்சி விவரிக்கிறது. ஆக்சிசன் சுழற்சி நடைபெறுவதற்கான முக்கியமான காரணியாக ஒளிச்சேர்க்கை திகழ்கிறது. இந்த நவீன வளிமண்டலம் உருவாவதற்கு ஒளிச்சேர்க்கையும் ஆக்சிசன் சுழற்சியுமே முக்கிய காரணிகளாகும். ஒளிச்சேர்க்கையினால் ஆக்சிசன் வளிமண்டலத்தில் வெளிவிடப்படுகிறது. சுவாசித்தல், சிதைவு மற்றும் எரிதல் செயல்முறைகள் ஆக்சிசனை வளிமண்டலத்தில் இருந்து நீக்குகின்றன. இப்போதிருக்கும் நிலையில் ஆக்சிசன் உற்பத்தியும் ஆக்சிசன் பயன்பாடும் சம் விகிதத்தில் இருப்பதாக ஆய்வுகள் தெரிவிக்கின்றன.

உலக நீர் நிலைகளின் கரைசல்களில் இருந்தும் தனி ஆக்சிசன் தோன்றுகிறது. தாழ்வெப்ப நிலைகளில் அதிகரிக்கும் ஆக்சிசனின் கரைதிறன் கடல்சார் வாழ்க்கையுடன் மிக முக்கியமான தொடர்பைக் கொண்டுள்ளது. உயிர்வாழ்வன அடர்த்தியாக துருவக்கடல்களில் காணப்படுவதற்கு அங்கு ஆக்சிசன் அளவு அதிகமாகக் காணப்படுவதே காரணமாகும். நைட்ரேட்டு அல்லது பாசுப்பேட்டு போன்ற தாவர நுண்ணுயிரிகளால் மாசடைந்த நீரில் பூஞ்சைகள் வளர்ந்து தூர்ந்துபோவதால் நீர்ப்பகுதிகளில் ஆக்சிசன் அளவு குறைகிறது. தண்ணீரின் உயிர்வேதியியல் தேவையை கணக்கில் எடுத்துக் கொண்டு விஞ்ஞானிகள் தண்ணீரின் தரத்தை இறுதி செய்கிறார்கள். அல்லது தண்ணீர் அதன் பழைய நிலையை அடைய எவ்வளவு ஆக்சிசன் தேவைப்படுகிறது என்பதைக் கணக்கிட்டும் தண்ணீரின் தரத்தை அவர்கள் முடிவு செய்கிறார்கள்.

வரலாறு

ஆக்சிசன் கண்டுபிடிப்பு

காரல் வில்லெம் சீலெ

காரல் வில்லெம் சீலெ. ஆக்சிசனை முதலில் கண்டுபிடித்தவர் இவரே ஆயினும், இது பிரீசுட்லீயின் வெளியீட்டுக்குப் பின்னரே வெளியிடப்பட்டது.

காரல் வில்லெம் சீலெ (C. W. Scheele) என்ற சுவீடன் நாட்டு வேதியியலார் 1774 ல் குளோரின் மற்றும் மாங்கனீசைக் கண்டுபிடித்தார். 1778 ல் மாலிப்பிடினத்தைக் கண்டுபிடித்தார். 1772 ல் இவர் ஆக்சிசனை அறிந்திருந்தார். சூடாக்குவதன் மூலம் மேர்க்கூரிக்கு ஆக்சைடு, பல்வேறு நைத்திரேட்டுக்கள் போன்ற கனிமச் சேர்மங்களைப் பகுத்து இவர் ஆக்சிசனை உற்பத்தி செய்து காட்டினார். ஆக்சிசனின் சில முக்கியமான வேதியியல் பண்புகளையும் கண்டறிந்து தெரிவித்தார்.[3][17][17][18] அக்காலத்தில், எரிவதற்கு உதவுவதாக அறியப்பட்ட ஒரே பொருள் இதுவே என்பதால் இதை "தீ வளி" என சீலெ அழைத்தார். இக்கண்டுபிடிப்புத் தொடர்பாக வளியும் தீயும் தொடர்பான நூல் என்னும் தலைப்பிட்ட ஆய்வுக்கட்டுரை ஒன்றையும் எழுதி, 1775 ஆம் ஆண்டு பதிப்பாளருக்கு அனுப்பினார். ஆனால் இது 1777 ஆம் ஆண்டிலேயே வெளியிடப்பட்டது. இவருடைய இக்கண்டுபிடிப்பு 1774 ல் இங்கிலாந்து நாட்டின் வேதியியலாரான சோசப்பு பிரீசிட்லி ஆக்சிசனைக் கண்டுபிடித்ததாக வெளியிட்ட பின்னரே[17][18] கால தாமதமாக வெளியிடப்பட்டதால் கண்டுபிடிப்பின் பெருமையையை இவரால் பெறமுடியவில்லை.[19]

சோசப்பு பிரீசிட்லி

சோசப்பு பிரீசிட்லி (Joseph Priestley). ஆக்சிசன் கண்டுபிடிப்பு தொடர்பில் இவருக்கே பொதுவாக முன்னுரிமை தரப்படுகிறது.

சோசப்பு பிரீசிட்லி பாதரச ஆக்சைடைச் சூடுபடுத்தி அதிலிருந்து வெளியேறும் வளிமம் எரியும் மெழுகுவர்த்தியை மேலும் பிரகாசமாக எரியத் தூண்டுவதாகக் கண்டார்.[3][17][18][20][21] அத்துடன் இவ்வளிமத்தைச் சுவாசித்த எலிகள் சுறுசுறுப்பாக இயங்குவதையும் நீண்ட நாட்கள் வாழ்வதையும் அவர் கவனித்தார். தானும் அவ்வளிமத்தைச் சுவாசித்த பின்னர், என்னுடைய சுவாசப்பை, வழமையான வழியைச் சுவாசிப்பதைக் காட்டிலும் வேறுபட்ட உணர்வு எதையும் பெறவில்லை என்றாலும், அதன் பின்னர் சிறிது நேரம் என்னுடைய மார்பு இலகுவாக இருப்பதாக நான் உணர்ந்தேன் என எழுதினார். சோசப்பு பிரீசிட்லி, தனது கண்டுபிடிப்பை 1775 ஆம் ஆண்டில் மேலும் வளி தொடர்பான கண்டுபிடிப்புக்கள் பற்றிய விபரங்கள் (An Account of Further Discoveries in Air) என்னும் தலைப்பிட்ட கட்டுரை ஒன்றின் மூலம் வெளியிட்டார். இக்கட்டுரை, பல்வேறு வகையான வளிகள் தொடர்பான சோதனைகளும் கவனிப்புக்களும் என்னும் அவரது நூலின் இரண்டாம் தொகுதியில் வெளியானது.

பிரான்சு நாட்டவரான பெயர் பெற்ற வேதியியலாளர் அந்துவான் லோரென்ட் இலவாசியே (Antoine Laurent Lavoisier) என்பவரும் தனியாக ஆக்சிசனைக் கண்டுபிடித்தாதாகக் கருதப்பட்டது. ஆனால், பிரீசுட்லி 1774 அக்டோபரில் இலவாசியேயைச் சந்தித்துத் தனது சோதனைகள் பற்றியும் அதை அவர் எவ்வாறு உற்பத்தி செய்தார் என்பது குறித்தும் கூறியுள்ளார். சீலெயும் தனது கண்டுபிடிப்புப் பற்றி 1774 செப்டெம்பரில் இலவோசியேக்குக் கடிதம் எழுதியுள்ளார். இவ்வாறான கடிதம் ஒன்றைப் பெற்றுக்கொண்டதை இலவோசியே ஏற்றுக்கொண்டதில்லை. ஆனால், சீலெ இறந்த பின்னர் அவரது உடமைகளுக்குள் இக்கடிதத்தின் படி ஒன்று கிடைத்தது.

இலவோசியேயின் பங்களிப்பு

அந்துவான் இலவாசியே

சர்ச்சைக்கு இடமில்லாத இலவோசியேயின் பங்களிப்பு, முதன் முதலாக ஒட்சியேற்றம் தொடர்பில் போதிய கணியம் சார் சோதனைகளைச் செய்ததும், எரிதல் எவ்வாறு நடைபெறுகின்றது என்பது குறித்துச் சரியான விளக்கம் கொடுத்ததும் ஆகும்.[3] இச் சோதனைகளையும் இதுபோன்ற பிற சோதனைகளையும் பயன்படுத்தி, 1774 ஆம் ஆண்டு முதல் புளோசித்தன் கோட்பாட்டைப் பிழை என நிறுவுவதில் ஈடுபட்டதுடன், சோசப்பு பிரீசிட்லி, சீலெயும் கண்டுபிடித்த பொருள் ஒரு வேதியியல் தனிமம் என்பதையும் நிறுவினார்.

18 நூற்றாண்டின் தொடக்கத்தில் அந்துவான் இலவாசியே அவர்கள் தவறுதலாக எல்லா காடியில் இருந்து தோன்றும் வளிமம் என்று எண்ணி “காடியிலிருந்து உண்டாவது” என்று பொருள்படும் கிரேக்க மொழி வழிப் பெற்ற பெயராக “ஆக்சிசன்” என்பதனைச் சூட்டினார்.[16][19] கிரேக்க மொழியில் ஆக்குசிசு என்றால் அமிலம் என்றும் "சென்" என்றால் உற்பத்தி செய்தல் என்றும் பொருள்.[16] உற்பத்தி செய்தால் பாதரச ஆக்சைடு மட்டுமின்றி வெள்ளி, தங்கம், பிளாட்டினம் இவற்றின் ஆக்சைடுகளை சூடுபடுத்தியும் ஆக்சிசனைப் பெறலாம். எனினும் பெரும்பாலான உலோக ஆக்சைடுகள் சூடுபடுத்தும் போது ஆக்சிசனை வெளியேற்றுவதில்லை. மாங்கனீசு டை ஆக்குசைடு, பேரியம் பெராக்குசைடு செவ்வீயம் போன்ற உயர் ஆக்சைடுகளைச் சூடுபடுத்தியும் ஆக்சிசனைப் பெறலாம். மாங்கனீசு டை ஆக்சைடை அடர்மிகு கந்தக அமிலத்தில் இட்டு சூடுபடுத்த உடனடியாக ஆக்சிசன் வெளியேறுகிறது. அமிலமிட்ட நீரை மின்னாற் பகுக்க ஆக்சிசன் நேர் மின் வாயில் வெளியேறுகிறது.

ஆக்குசிசனின் பண்புகள்

ஈரணு ஆக்சிசன், O2, ஓர் வளிமம். இவ்வடிவிலேதான் இயல்பாக (சீர்தர அழுத்த வெப்ப நிலைகளில்) ஆக்சிசன் உள்ளது நிலவுலகக் காற்று மண்டலத்தில் 21 விழுக்காடு ஆக்சிசன் உள்ளதும் இவ்வடிவிலேதான்.

ஆக்சிசன் நிறம் மணம் சுவையற்ற ஒரு வளிமம் .நீர்ம வடிவில் உள்ள ஆக்சிசன் ஒளி ஊடுருவும் நீல நிறத்தில் இருக்கும். சிறிதளவு நிலைபெறா காந்தத்தன்மை (paramagnetic) உடையது. காந்தப் புலனுக்கு உட்படுத்தினால் நீர்ம ஆக்சிசன், காந்த முனைகளுக்கு இடையே, இழுப்புண்டு முனைகளை இணைத்து நிற்கும். உறைந்து திண்மமாகச் சுருங்கும் போது வெளிர் நீல நிறத்தைப் பெறுகிறது. இது காற்றை விடச் சற்று கனமானது. நீரில் ஓரளவு கரையக்கூடியது. நீரில் கரைந்த ஆக்சிசன் நீர் வாழ் உயிரினங்களின் சுவாசித்தலுக்கும், வளிமண்டலத்தில் உள்ள ஆக்சிசன் நிலத்தில் வாழும் விலங்கினங்களுக்கும் மனிதர்களுக்கும் சுவாசித்தலுக்கும் இன்றியமையாததாய் உள்ளது. உடலுக்குள் சத்துப் பொருட்களை எரித்து ஆற்றலைப் பெறுவதற்கும், உயிர் வேதியல் சார்ந்த பல வினைகளை ஏற்படுத்துவதற்கும் இந்த ஆக்சிசன் தேவை.

இமோகுளோபின் (Haemoglobin) என்ற பெரிய புரத (Protein) மூலக்கூறுகள் ஆக்சிசனை நுரையீரலிலிருந்து உயிர்ச் செல்களுக்கு எடுத்துச் செல்கிறது ஒரு இமோகுளோபினில் 574 அமினோ அமிலங்கள் இணைந்துள்ளன. ஆக்சிசனை எடுத்துச் செல்லும் போது இமோகுளோபின் சென்னிறமாகவும், ஆக்சிசனை திசுக்களுக்குக் கொடுத்த பின் ஆக்சிசன் இல்லா இமோகுளோபின் நீல நிறமாகவும் இருக்கும்.[22] பொதுவாக இரத்தத்திலுள்ள சிவப்பணுக்கள் வட்டத் தட்டு வடிவில் இருக்கும். சிலருக்கு இமோகுளோபினில் உள்ள அமினோ அமிலங்கள் குறைபாடுடன் இருக்கும். இது சிவப்பணு மூலக்கூறின் வடிவத்தில் மாற்றத்தை ஏற்படுத்தி பிறை வடிவத் தோற்றத்தைத் தரும். இந்த உருமாறிய சிவப்பணுக்கள் ஆக்சிசன் பரிமாற்றத்தில் தீங்களிக்கவல்ல பாதிப்பை உண்டாக்கும்.[4] இதையே பிறைவடிவச் செல் இரத்தச் சோகை (Sickle cell anemia) என்பர்.

சீர்தரம் செய்யப்பட்ட அழுத்த வெப்ப நிலைகளில் ஆக்சிசன் ஈரணு (O2) மூலக்கூறு வடிவில் காணப்படுகின்றது.[23] வளிம நிலையில் ஆக்சிசன் நிறமற்ற ஒரு பொருள். நீரில் கரைவது மிகவும் குறைவே. ஆக்குசிசனின் ஈரணு மூலக்கூற்றின் ( O2) பிணைப்பின் நீளம் 121 பி.மீ (pm) ஆகும். பிணைப்பின் வலுவாற்றல் (bond energy) 498 kJ/mol.[24]. ஆக்சிசனின் இயைபு எண் (valency )2.[25] 'O' என்ற வேதிக் குறியீட்டுடன் கூடிய ஆக்சிசனின் அணு எண் 8, அணு எடை 15.9994. இதன் அடர்த்தி 1.33 கிகி /கமீ. இதன் உறை நிலையும் கொதி நிலையும் முறையே 54.75 ,90.18 K ஆகும்.

வேதியியலில் ஆக்சிசன் ஒரு வினைதிறமிக்க தனிமமாகும். மந்த வளிமம் தவிர்த்த பிற மாழைகள் (உலோகங்கள்), மாழையிலிகளுடன் (அலோகங்களுடன்) நேரடியாகவோ அல்லது மறைமுகமாகவோ இணைகிறது. இவை ஆக்சிசனுடன் கூடுவதையே எரிதல் என்கிறோம். தங்கமும், பிளாட்டினமும் ஆக்சிசனில் எரிவதில்லை. என்றாலும் அவற்றின் ஆக்சைடுகள் நேரடியில்லாத வழியில் தோன்றுகின்றன. தாவரங்கள் தங்களுக்குத் தேவையான சத்துப் பொருட்களை ஒளிச் சேர்க்கை(Photo synthesis) மூலம் உற்பத்தி செய்து கொள்கின்றன.[26] வளிமண்டலத்திலுள்ள கார்பன் டை ஆக்சைடை தாவரத்தின் இலைகள் உறிஞ்ச, நிலத்தடி நீரை வேர்கள் உறிஞ்ச, இவை சேர்ந்து இசுட்டார்ச்சு (Starch) எனும் சக்கரைப் பொருளாக மாறுகிறது. இதற்குத் தேவையான ஆற்றலைத் தாவரங்கள் பச்சையம் (Chlorophyl) என்ற நிறமிகளால் (Pigments) ஒளிச் சேர்க்கையின் போது 400 -700 நானோ மீட்டர் நெடுக்கையில் சூரிய ஆற்றலை உட்கவர்ந்து பெறுகிறது.[27] ஒளிச் சேர்க்கையின் போது வெளிப்படும் ஆக்சிசன் வளிமண்டலத்தில் சேருகிறது.[10] எனவே விலங்கினங்களின் மூச்சுவிடுதலுக்குத் தேவையான ஆக்சிசன் தடையின்றிக் கிடைக்க இது வழி செய்கிறது. இதனால் வளிமண்டலத்தில் ஆக்சிசன் மட்டுமின்றி கார்பன்-டை-ஆக்சைடும் ஒரு சம நிலையில் இருக்கிறது.

மாற்றுரு

ஓசோன் (Ozone) எனும் மூவணு ஆக்சிசன் மூலக்கூறு, O3, சீரான அழுத்த வெப்பநிலைகளில் ஒரோவொருக்கால் சிறிதளவு காணப்படும் வளிமம் ஆகும். இது ஆக்சிசனின் ஒரு மாற்றுரு. இவ்வகை பெரும்பாலும் வானின் வளி மண்டலத்தில் மிக உயரமான நிலைகளில் காணப்படும்.

பொதுவாகக் காணப்படும் உரு ஈரணு வடிவம்தான்.[28] மூவணு வடிவம் ஒரோவொருக்கால் சிறிதளவே காணப்படும். மூன்று ஆக்சிசன் அணுக்களால் ஆன மூலக்கூறு ஓசோன் எனப்படும்.[29] இது நீர் மூலக்கூறு போல நேரியலற்றதாக (non-linear) இருக்கிறது. இள நீல நிறமுடைய நச்சு வளிமமான இது மூக்கைத் துளைக்கிற கார நெடியுடையது.புற ஊதாக்கதிர்களால் வளிமண்டலத்தின் மிக உயரமான இடங்களில் தொடர்ந்து உருவாகிக்கொண்டு இருக்கும்.[16] வெப்ப இயங்கியல் முறைகளின் படி இந்த மூவணு ஆக்சிசன் உறுதிநிலைபெறா வடிவம். ஆக்சிசன் வழியாக மின்னிறக்கம் செய்யும் போது இது உண்டாகிறது. அதனால் இது நெடுஞ்சாலைகளில் உள்ள உயர் மின் கம்பங்கள், இருப்புப் பாதை நிலையங்களில் உள்ள உயர் மின்னழுத்த மோட்டார்களுக்கு அருகாமையில் உருவாகும் வாய்ப்பைப் பெற்றுள்ளது.[22] வளி மண்டலத்தில் மின்னல் என்பது மின்னிறக்கமே. மின்னல் ஏற்படும்போது வளிமண்டலத்தில் ஓசோன் உற்பத்தி செய்யப்படுகிறது.

ஓசோன் மிகவும் வினைத்திறன் மிக்க ஒரு வேதிச் சேர்மம். இரப்பர், நூலிழைகள், போன்றவற்றை எளிதாகச் சிதைக்கும். ஓசோன் செறிவு மிக்க காற்றைச் சுவாசித்தால் நுரையீரல் பாதிக்கப்படுகிறது.[22] வளிமண்டலத்தின் அடிப்பகுதியில் ஓசோனை உற்பத்தி செய்யும் மூலங்கள் நைட்ரசன் டை ஆக்சைடின் ஒளி வேதியியல் சிதைவாகும். நைட்ரசன் டை ஆக்சைடு தானியங்கு வண்டிகள் உமிழும் கழிவுகளிலிருந்து பெறப்படுகிறது. இதை தீங்கிழைக்கும் ஓசோன் என்பர்.[30] ஆனால் வளிமண்டலத்தின் உயரடுக்குகளில் 15-50 கிமீ உயரங்களில் ஓசோன் செரிவுற்றுள்ளது. இந்த ஓசோன் படலம் உலகில் வாழும் உயிரினங்களுக்கு ஒரு பாதுகாப்புக் கவசம் போலச் செயல்படுகிறது. சூரிய ஒளியோடு சேர்ந்து வரும் தீங்கிழைக்க வல்ல புற ஊதாக் கதிர்களை இந்த ஓசோன் படலம் உட்கவர்ந்து கொள்வதால் அவை பூமியின் நிலப்பரப்பை எட்டுவதில்லை.

மிக அண்மையில், உடலின் இயல்பான தடுப்பாற்றல் முறையின் இயக்கத்தால் நுண்ணுயிரிகளைக் கொல்ல இந்த மூவணு ஓசோன் உருவாகின்றது என்று கண்டுள்ளனர்.[31] நீர்ம நிலையிலும் திண்ம நிலையிலும் உள்ள ஓசோன் சற்று கூடிய நீல நிறமாக இருக்கும். இவ்வடிவங்களும் உறுதிநிலை கொள்ளா வடிவங்கள்தாம். சில நேரங்களில் வெடிக்கவும் செய்யும்.ஓ4 என்ற டெட்ரா ஆக்சிசன் என்பதை 2001-ல் கண்டறிந்துள்ளனர்.[32][33]

இயற்பியல் இயல்புகள்

ஆக்சிசன், நைதரசனிலும் கூடுதலாக நீரில் கரையக் கூடியது. வளியில் ஆக்சிசனும், நைதரசனும் 1:4 என்னும் விகிதத்தில் இருக்க நீரில் ஒரு ஆக்சிசன் மூலக்கூறுக்கு இரண்டு நைதரசன் மூலக்கூறே காணப்படுகின்றது. ஆக்சிசனின் நீரில் கரையும் தன்மை வெப்பநிலையில் தங்கியுள்ளது. 20 °C யில் கரைவதிலும் (7.6 மிகி·லீ−1) 0 °C யில் இரண்டு மடங்கு (14.6 மிகி·லீ−1) ஆக்சிசன் நீரில் கரைகின்றது.[20][21] 25 °C யிலும் 1 வளிமண்டல அழுத்தத்திலும், நன்னீர் ஒரு லீட்டருக்கு 6.04 மில்லிலீட்டர் ஆக்சிசன் காணப்படும். ஆனால் கடல் நீரில் லீட்டருக்கு 4.95 மில்லிலீட்டர் ஆக்சிசனே காணப்படுகின்றது.[34] 5 °C யில் கரையும் தன்மை அதிகரித்து நன்னீரில் 9.0 மில்லிலீட்டரும், கடல் நீரில் லீட்டருக்கு 7,2 மில்லிலீட்டரும் கரைகின்றது.

ஆக்சிசன் 90.20 கெல்வின் (−182.95 °செ, −297.31 °பா) வெப்பநிலையில் நீர்மமாக ஒடுங்குகிறது. 54.36 கெல்வின் (−218.79 °செ, −361.82 °பா) வெப்பநிலையில் திண்மமாக உறைகிறது.[35] ஆக்சிசன் நீர்மமும், திண்மமும் இளம் வான்-நீல நிறம் கொண்ட தெளிவான பொருட்கள்.[36] நீர்ம வளியைப் பகுதிபடக் காய்ச்சிவடித்தல் (fractional distillation) முறை மூலம் தூய ஆக்சிசன் பெறப்படுகின்றது. நீர்ம நைதரசனைக் குளிர்விப்பானாகப் (coolant) பயன்படுத்தி வளியை நீர்ம நிலைக்கு ஒருக்குவதன் மூலமும் ஆக்சிசனைப் பெறமுடியும். ஆக்சிசன் தாக்குதிறன் கூடிய பொருளாதலால் இதை எரியக் கூடிய பொருட்களிலிருந்து வேறாக வைத்திருக்க வேண்டும்.[37]

ஓரிடத்தான்களும், விண்மீன்சார் தோற்றமும்

நிறைமிக்க ஒரு விண்மீனின் வாழ்க்கையில் பிற்காலகட்டத்தில், 16O அணுவகை ஓ-வலயத்தில் (O-shell) செறிவடைகின்றது, 17O வகை ஓரிடத்தான் எச்சு-வலையத்திலும் (H-shell) 18O வகை ஈலிய வலயத்திலும் (He-shell) காணப்படுகின்றது.

இயற்கையில் காணப்படும் ஆக்சிசன் மூன்று உறுதியான ஓரிடத்தான்களின் கலவையாகும் இவை 16O, 17O, and 18O என்பன.[38] இவற்றுள் 16O ஓரிடத்தானே மொத்த அளவில் 99.762% ஆகும். ஆக்சிசன் ஓரிடத்தான்களின் திணிவெண்கள் 12 தொடக்கம் 28 வரை வேறுபடுகின்றது.

பெரும்பாலான 16O விண்மீன்களில் இடம்பெற்ற ஈலியச் சேர்க்கையின் (helium fusion) போது உருவானவை. ஒரு பகுதி நியான் எரிதல் முறையாலும் உருவானது.[39] 17O, காபன், நைதரசன், ஆக்சிசன் வட்டத்தின்போது ஐதரசன் எரிந்து ஈலியம் ஆகும்போது உருவாகிறது. இதனால் இந்த ஓரிடத்தான் விண்மீன்களில் ஐதரசன் எரியும் வலயங்களில் காணப்படுகின்றது.[39]

ஆக்சிசனின் 14 கதிரியக்க ஓரிடத்தான்கள் கண்டறியப்பட்டு உள்ளன. இவற்றுள் 15O உறுதி கூடியது. இதன் அரைவாழ்வுக் காலம் 122.24 நொடிகள். 14O 70.606 நொடிகள் அரைவாழ்வுக் காலம் கொண்டது. எஞ்சிய கதிரியக்க ஓரிடத்தான்கள் எல்லாமே 27 செக்கன்களிலும் குறைவான அரைவாழ்வுக் காலம் கொண்டவை. அவற்றிலும் பெரும்பாலானவை 83 மில்லி நொடிகளிலும் குறைவான அரைவாழ்வுக் காலத்தோடு கூடியவை. 16O இலும் நிறை குறைவான ஓரிடத்தான்களின் மிகப் பொதுவான சிதைவு முறை எதிர்மின்னிப் பிடிப்பு (electron capture) முறை ஆகும்.[40][41][42] இம்முறையில் ஓரிடத்தான்கள் நைதரசனாக மாறுகின்றன.[38] 18O இலும் நிறை கூடிய ஓரிடத்தான்களின் பொதுவான சிதைவு முறை பீட்டா சிதைவு (beta decay) முறை ஆகும். இம்முறையில் ஓரிடத்தான்கள் புளோரினாக மாறுகின்றன

இருப்பு

பால் வழி பேரடையில் உள்ள மிகவும் பொதுவான 10 தனிமங்கள்[43]
Z தனிமம் திணிவுப் பின்னம் மில்லியனில் ஒரு பங்கு.
1 ஐதரசன் 739,000 ஆக்சிசனிலும் (சிவப்புச் சட்டம்) 71 மடங்கு
2 ஈலியம் 240,000 ஆக்சிசனிலும் (சிவப்புச் சட்டம்) 23 மடங்கு
8 ஆக்சிசன் 10,400 10400
 
6 கரிமம் 4,600 4600
 
10 நியோன் 1,340 1340
 
26 இரும்பு 1,090 1090
 
7 நைதரசன் 960 960
 
14 சிலிக்கான் 650 650
 
12 மக்னீசியம் 580 580
 
16 கந்தகம் 440 440
 

புவியின் உயிர்க் கோளம், வளி, கடல், நிலம் ஆகியவற்றில் மிகவும் அதிக அளவில் காணப்படும் வேதியியல் தனிமம் ஆக்சிசன் ஆகும். அண்டத்திலும், ஐதரசன், ஈலியம் ஆகியவற்றுக்கு அடுத்து அதிக அளவில் இருக்கும் தனிமம் ஆக்சிசனே. சூரியனின் திணிவின் 0.9% ஆக்சிசனாக உள்ளது. திணிவின் அடிப்படையில் புவி மேலோட்டின் 49.2% ஆக்சிசன் ஆக இருப்பதுடன், உலகின் பெருங்கடல்களில் இது 88.8% ஆகவும் உள்ளது. புவியின் வளிமண்டலத்தில், கனவளவின் அடிப்படையில் 20.8% ஐயும், திணிவு அடிப்படையில் 20.8% ஐயும் (ஏறத்தாழ 1015 தொன்கள்) கொண்ட ஆக்சிசன் அதன் இரண்டாவது முக்கிய கூறாக உள்ளது. சூரிய மண்டலத்தில் உள்ள பிற கோள்களுடன் ஒப்பிடும்போது, புவியின் வளிமண்டலத்தில் இவ்வளவு அதிகமான ஆக்சிசன் இருப்பது வழமைக்கு மாறானது. செவ்வாய், வெள்ளி ஆகிய கோள்களின் வளிமண்டலங்களில் மிகவும் குறைவான ஆக்சிசனே காணப்படுகின்றது. இவ்வாறு உள்ள ஆக்சிசனும் புறவூதாக் கதிர்கள் காபனீரொட்சைடு போன்ற ஆக்சிசனைக் கொண்ட மூலக்கூறுகளைத் தாக்குவதாலேயே உருவாகின்றது.

ஆக்சிசன் வட்டத்தின் காரணத்தினாலேயே புவியில் ஆக்சிசன் வளிமம் வழமைக்கு மாறாக அதிக அளவில் காணப்படுகிறது. இந்த உயிர்ப்புவிவேதியியல் வட்டம் புவியில் அதன் மூன்று முக்கியமான கொள்ளிடங்களான வளிமண்டலம், உயிர்க்கோளம், பாறைக்கோளம் ஆகியவற்றுக்கு உள்ளேயும் அவற்றுக்கு இடையிலும் ஆக்சிசனின் நகர்வுகளை விளக்குகிறது.

தொழில்முறை தயாரிப்பு

தொழிற்சாலை பயன்பாடுகளுக்காக காற்றிலிருந்து ஆண்டுக்கு 100 மில்லியன் டன் O
2
பிரித்தெடுக்கப்படுகிறது; ஆக்சிசன் தயாரிப்பிற்கு முதன்மையாக இரண்டு செய்முறைகள் கடைபிடிக்கப்படுகின்றன.[19] மிகவும் வழமையான செய்முறை நீர்மநிலையிலுள்ள காற்றிலிருந்து பகுதிபடக் காய்ச்சி பல்வேறு அங்கங்களை வடித்திறக்குவதாகும்; N
2
ஆவிநிலையில் வடித்திறக்கப்பட O
2
நீர்மநிலையில் அடியில் தங்கியிருக்கும்.[19]

A drawing of three vertical pipes connected at the bottom and filled with oxygen (left pipe), water (middle) and hydrogen (right). Anode and cathode electrodes are inserted into the left and right pipes and externally connected to a battery.
ஆஃப்மேன் மின்பகுப்பு கருவி நீரிலிருந்து ஆக்சிசனைப் பிரித்தெடுக்கப் பயன்படுத்தப்படுகிறது.

O
2
வளிமம் தயாரிக்க மற்ற முதன்மையான செய்முறை உலர்ந்த, தூய்மையான காற்றை சோடி செயோலைற்று மூலக்கூற்று சல்லடைகளாலான படுகை மீது செலுத்துவதாகும்; செயோலைற்று சல்லடை நைத்திரசனை உள்வாங்கிக் கொள்ள வெளியே 90% முதல் 93% வரை தூய்மையான O
2
கிடைக்கிறது.[19] அதேநேரத்தில், மற்ற சல்லடைப் படுகையில் காற்றழத்தத்தைக் குறைப்பதால் நைத்திரசன் விடுவிக்கப்படுகிறது; காற்றுச் செலுத்துகையை திசை மாற்றி இதன் வழியே செலுத்தப்படுகிறது. இவ்வாறு சில சுழற்சிகளுக்குப் பிறகு இரண்டு பக்கத்திலிருந்தும் ஆக்சின் தொடர்ந்து கிடைக்கிறது. இந்தச் செய்முறை அமுக்க மாறி உள்வாங்கல் எனப்படுகின்றது. ஆக்சிசன் வளிமம் இத்தகைய கடுங்குளிர் தொழினுட்பம் தேவைப்படாத வழிகளில் தயாரிப்பது வளர்ந்து வருகின்றது.[44]

ஆக்சிசன் வளிமத்தை நீரின் மின்னாற்பகுப்பு மூலமாகவும் தயாரிக்கவியலும். நேரோட்ட மின்சாரம் பயன்படுத்தப்பட வேண்டும்: அலையோட்டம் பயன்படுத்தப்பட்டால் ஒவ்வொரு பக்கத்திலும் ஆக்சிசனும் ஐதரசனும் !:2 என்ற விகிதத்தில் சேகரிக்கப்பட்டு வெடிக்கக் கூடும்.

இதேபோன்ற மற்றொரு செய்முறை ஆக்சைடுகளிலிருந்தும் ஆக்சோ-அமிலங்களிலிலிருந்தும் மின்வினையூக்கி O
2
வெளியேறுவதாகும். மின்சாரதிற்கு மாற்றாக வேதி வினையூக்கிகளையும் பயன்படுத்தலாம். நீர்மூழ்கிக் கப்பல்களில் வாழ்வாதார அமைப்புகளில் பயன்படுத்தப்படும் ஆக்சிசன் வர்த்திகள் இத்தகையன. இதே கோட்பாடு வணிகமய வானூர்திகளிலும் அமுக்கநிலை குறைவு நெருக்கடிகளின்போது பயனாகின்றது. மற்றொரு முறை சிர்கோனியம் டையாக்சைடு சுட்டாங்கல் மென்றகடுகளில் உயரிய அழுத்தம் மூலமாகவோ மின்னோட்டம் மூலமாகவோ காற்றை கரைய கட்டாயப்படுத்துவதாகும்; இதன் மூலம் கிட்டத்தட்ட தூய்மையான O
2
வளிமம் கிடைக்கிறது.[45]

சேமிப்பு

ஆக்சிசனை உயரழுத்த ஆக்சிசன் கொள்கலன்களிலும் கடுங்குளிரக கிடங்குகளிலும் வேதியச் சேர்மங்களிலும் சேமிக்கலாம். பொருளியல் காரணங்களுக்காக சிறப்பான காப்பிட்ட கொள்கலன்களில் ஆக்சிசன் நீர்ம நிலையில் ஓரிடத்திலிருந்து மற்றோரிடத்திற்கு எடுத்துச் செல்லப்படுகிறது; ஒரு லிட்டர் நீர்மநிலை ஆக்சிசன் வளிமண்டல அழுத்தத்தில் 20 °C (68 °F) வெப்பநிலையில் உள்ள வளிமநிலையில் 840 லிட்டர்கள் ஆக்சிசனுக்கு ஈடானதாகும்.[19] இத்தகைய கொள்கலன்களில் எடுத்துச் செல்லப்பட்டு திரளான நீர்மநிலை ஆக்சிசன் மருத்துவமனைகள், மற்ற நிறுவனங்களின் வெளியே உள்ள சேமிப்புக் கிடங்குகளுக்கு மாற்றப்படுகிறது. நீர்ம ஆக்சிசன் வெப்பப் பரிமாற்றிகள் வழியாக செலுத்தப்படும்போது கடுங்குளிரிலுள்ள ஆக்சிசன் வளிமமாக மாற்றப்படுகிறது; அழுத்தப்பட்ட ஆக்சிசனாக சேமிக்கவும் எடுத்துச் செல்லவும் சிறிய உருளைகலன்களும் பயன்படுத்தப்படுகின்றது. இது ஆக்சி-எரிபொருள் பற்றவைப்பு, மருத்துவப் பயன்பாடுகளுக்கு ஓரிடத்திலிருந்து எளிதாக எடுத்துச் செல்லுமாறு அமைக்கப்பட்டுள்ளன.[19]

கரிமச் சேர்மங்களில் ஆக்சிசன்

மிக முக்கியமான கரிமச்சேர்மங்களின் வகைப்பாடுகள் அனைத்திலும் ஆக்சிசன் ஒரு பகுதிப்பொருளாக உள்ளது. இங்கு R என்பது ஒரு கரிமவேதியியல் குழுவாகும். ஆல்ககால்கள் (R-OH); ஈதர்கள் (R-O-R); கீட்டோன்கள் (R-CO-R); ஆல்டிகைடுகள் (R-CO-H); கார்பாக்சிலிக் அமிலங்கள் (R-COOH); எசுத்தர்கள் (R-COO-R); அமில நீரிலிகள் (R-CO-O-CO-R); மற்றும் அமைடுகள் (R-C(O)-NR2) போன்ற அனைத்து கரிமச் சேர்மங்க்களிலும் ஆக்சிசன் காணப்படுகிறது. மிக முக்கியமான கரிமக் கரைப்பான்களான அசிட்டோன், மெத்தனால், எத்தனால், ஐசோபுரோப்பனால், பியூரான், டெட்ரா ஐதரோபியூரான், டை எத்தில் ஈதர், டையாக்சேன், அசிட்டிக் அமிலம் மற்றும் பார்மிக் அமிலம் உள்ளிட்ட கரைப்பான்களிலும் ஆக்சிசன் காணப்படுகிறது.

ஆக்சிசனின் பயன்கள்

மருத்துவம்

A gray device with a label DeVILBISS LT4000 and some text on the front panel. A green plastic pipe is running from the device.
நாட்பட்ட நுரையீரல் அடைப்பு நோய் உள்ள நோயாளியின் வீட்டில் வைக்கப்பட்டுள்ள ஆக்சிசன் செறிவாக்கி

நன்கு வளர்ச்சியடைந்த ஒரு மனிதன் சாதாரணமாக சுவாசிக்கும்போது (மூச்சினை உள்ளிழுத்து மீண்டும் வெளிவிடுவது ) ஒரு நிமிடத்திற்கு 1.8 கிராம் முதல் 2.4 கிராம் வரை ஆக்சிசன் தேவைப்படுகிறது.[46] இதன்படி ஒவ்வொரு ஆண்டும் மனித மூலம் உள்ளிழுக்கப்பட்டு ஆக்சிசன் 6 பில்லியன் டன்கள்களுக்கும் அதிமாகும்.[47]

மூச்சியக்கத்தின்போது முதன்மை நோக்கமே காற்றிலிருந்து ஆக்சிசனை உளவாங்குவது ஆகும்; எனவே மருத்துவத்தில் நிரவலுக்காக ஆக்சிசன் கொடுக்கப்படுகிறது. இதனால் நோயாளியின் குருதிநாளங்களில் ஆக்சிசனின் அளவு கூடுவது மட்டுமன்றி இரண்டாம்நிலை தாக்கமாக நோய்வாய்ப்பட்ட பல்வேறு நுரையீரல்களில் குருதியோட்டத்திற்கான தடையை குறைக்கிறது; இதயத்தின் வேலைப்பளுவை குறைக்கிறது. நாட்பட்ட நுரையீரல் அடைப்பு நோய், நுரையீரல் அழற்சி, சில இதயநோய்கள் (இதயத் திறனிழப்பு), மூச்சுப்பை தமனி அழுத்தத்தை கூட்டுகின்ற சில நோய்கள், மற்றும் ஆக்சிசன் வளிமத்தை ஏற்கவும் பயன்படுத்தவும் கூடிய உடலின் திறனை தாக்கும் எந்தவொரு நோய்க்கும் ஆக்சிசன் சிகிட்சை பயன்படுத்தப்படுகின்றது.[48]

ஆக்சிசன் சிகிட்சையை மருத்துவமனைகளைலோ நோயாளியின் வீட்டிலோ பயன்படுத்துமாறு எளிதாக எடுத்துச்செல்லத்தக்க கருவிகள் வந்துள்ளன. ஆக்சிசன் கூடாரங்கள் ஒருகாலத்தில் பயன்படுத்தப்பட்டன; தற்காலத்தில் பெரும்பாலும் ஆக்சிசன் முகமூடிகள் அல்லது மூக்குக் குழாய்கள் பயன்படுத்தப்படுகின்றன.[49]

உயரழுத்த ஆக்சிசன் சிகிட்சையில் சிறப்பான ஆக்சிசன் அறைகள் பயன்படுத்தப்படுகின்றன; இங்கு நோயாளியைச் சுற்றி, சிலநேரங்களில் மருத்துவப் பணியாளருக்கும், உயர்ந்த அழுத்தத்தில் ஆக்சிசன் வழங்கப்படுகிறது.[50] இத்தகைய சிகிட்சை கார்பனோரொக்சைட்டு நச்சு, வளிம திசு அழுகல், மற்றும் அமுக்கநீக்க நோய்மை போன்றவற்றிற்கு பயன்படுத்தப்படுகின்றது.[51] நுரையீரல்களில் கூடிய அழுத்தத்திலான O
2
செறிவு கார்பனோரொக்சைட்டு வளிமத்தை குருதிவளிக்காவிகளிலிருந்து வெளியேற்ற உதவுகின்றது.[52][53] ஆக்சிசன் வளிமம் திசு அழுகலை உண்டாக்குகின்ற காற்றின்றிவாழும் நுண்ணுயிரிகளுக்கு நச்சாக அமைவதால் உயர் அழுத்தத்திலுள்ள ஆக்சிசன் அவற்றை கொல்கின்றது.[54][55] ஆழ்நீர் மூழ்கிகள் மூழ்கித் திரும்புகையில் சரியாக அமுக்கநீக்க செய்முறைகளை கடைபிடிக்காவிட்டால் அவர்களுக்கு அமுக்கநீக்க நோய்மை ஏற்படுகின்றது; அவர்களது உடலில் கரைந்துள்ள வளிமங்கள், பொதுவாக நைத்திரசன், ஈலியம், கொப்புளங்களாக குருதியில் வெளியேறும். இவர்களுக்கும் உயரழுத்தத்திலுள்ள ஆக்சிசன் இந்நோய் சிகிட்சைக்கு உதவியாக உள்ளது.[48][56][57]

மருத்துவக் காரணங்களுக்காக இயக்கமுறை காற்றூட்டம் தேவைப்படும் நோயாளிகளுக்கு, காற்றில் காணப்படும் ஆக்சிசனின் செறிவான 21%ஐவிடக் கூடுதலான செறிவில் ஆக்சிசன் வழங்கப்படுகிறது.

பாசிட்ரான் உமிழ்பு தளகதிர்படயியலில் 15O ஓரிடத்தான் சோதனை முயற்சியாக பயன்படுத்தப்பட்டது.[58]

வாழ்வாதார அமைப்புகளிலும் பொழுதுபோக்கு விளையாட்டுக்களிலும்

அழுத்தம் குறைந்த தூய O
2
விண்வெளி உடையில் பயன்படுகிறது.

இயல்பாக வாழும் சூழலை விட்டு வேறுபட்ட சூழல்களில் பணிபுரிவோருக்கு ஆக்சிசன் ஊட்டம் தேவையாக இருக்கிறது.[59] மலை ஏறுபவர்கள்,[60] விமானங்களில் பயணிப்போர், கடலுக்கடியில் ஆராய்ச்சி செய்வோர், விண்வெளி[61] மற்றும் நீர்மூழ்கிக் கப்பல்களில் பணி புரிவோர்,[62][63] சுரங்கங்களில் வேலை செய்வோர், நோயாளிகள் போன்றவர்களுக்குத் சுவாசித்தலுக்குத் தேவையான ஆக்சிசனை வழங்க ஆக்சிசனூட்டம் பயன்தருகிறது.[48][49][50][64] நீர்ம ஆக்சிசனை கரிப் பொடியுடன் கலக்க அது ஒரு வெடிப் பொருளாகின்றது.

சின்னக் குப்பியில் சோடியம் குளோரேட்டையும் இரும்புத் துருவல்களையும் போட்டு விமானத்தின் ஒவ்வொரு இருக்கைக்கு அருகாமையிலும் வைத்திருப்பார்கள். ஏதாவது ஒரு காரணத்தின் பொருட்டு ஆக்சிசன் தேவை ஏற்பட்டால் புறத் தூண்டுதல் மூலம் வெடிக்கச் செய்து இரு வேதிப் பொருட்களையும் கலக்க வைத்து, ஆக்சிசனை உற்பத்தி செய்கின்றார்கள். இன்றைக்கு ஆக்சிசனை ஓரிடத்தில் உற்பத்தி செய்து, குழாய் மூலம் ஒவ்வொரு இருக்கைக்கும் அனுப்புகின்றார்கள். மருத்துவ மனைகளில் செயற்கைச் சுவாசத்திற்கு ஆக்சிசன் கலந்த வளிமங்கள் பயன்தருகின்றன. அமோனியா, மெதனால், எதிலின் ஆக்சைடு போன்ற வளிமங்களின் தொகுப்பாக்க முறையில் ஆக்சிசன் பயன்படுகிறது.

தொழிற்சாலைகளில்

An elderly worker in a helmet is facing his side to the viewer in an industrial hall. The hall is dark but is illuminated yellow glowing splashes of a melted substance.
பெரும்பான்மையான வணிகமுறை O
2
இரும்பை எஃகாக உருக்கியெடுக்கப் பயன்படுத்தப்படுகின்றது.

வணிகமுறையில் தயாரிக்கப்படும் ஆக்சிசனில் 55% இரும்புத்தாதுவிலிருந்து எஃகை உருக்கியெடுக்கப் பயன்படுத்தப்படுகின்றது.[45] இந்தச் செய்முறையில், உயரழுத்த ஈட்டி மூலமாக O
2
உருகிய இரும்பின் மீது செலுத்தப்படுகின்றது; இது கந்தக மாசுகளையும் மிகுதியான கரிமத்தையும் அவற்றின் ஆக்சைடுகளாக, முறையே SO
2
, CO
2
வெளியேற்றுகின்றது. இந்த வேதிவினைகள் வெப்பம் விடு வினைகளாதலால் வெப்பநிலை 1,700 °Cக்கு உயர்கின்றது.[45]

தயாரிக்கப்படும் ஆக்சிசனில் அடுத்த 25% வேதித் தொழிலில் பயன்படுத்தப்படுகின்றது.[45] எத்திலீன் O
2
உடன் வேதிவினையாற்றி எத்திலீன் ஆக்சைடு உருவாக்கப்படுகின்றது; இதிலிருந்து எத்திலீன் கிளைக்கால் உருவாக்கப்படுகின்றது; இது பல உறைவுதவிர்ப்பி மற்றும் நெகிழி மற்றும் துணிப் பொருட்களுக்கு தயாரிப்பு மூலமாக விளங்குகின்றது.[45]

மீதமுள்ள 20% வணிகமுறை ஆக்சிசன் மருத்துவப் பயன்பாடுகளுக்கும் உலோகங்களை வெட்டவும், பற்றவைத்து ஒட்டவும் ஏவூர்தி எரிபொருளாகவும் நன்னீராக்கலிலும் பயன்படுத்தப்படுகின்றது.[45] ஆக்சிசன் – அசிடிலின் வளிமங்களை ஊதி எரியச்செய்து உலோகங்களை வெட்டவும், பற்றவைத்து ஒட்டவும் பயன்படுத்துகிறார்கள். இது 3300 டிகிரி சென்டிகிரேடு வெப்பநிலை வரை தரவல்லது. ஆக்சிசன்-நைட்ரசன் எரி வளிமங்கள் பிளாட்டினம், சிலிகா போன்றவைகளுக்குப் பயன்தருகிறது. இது 2400 சென்டிகிரேடு வரை வெப்பநிலை தரவல்லது. 60 செமீ தடித்த உலோகம் ஆக்சி-அசிடிலின் தீச்சுடர் மூலம் சுடவைக்கப்படுகின்றது; இதன்மீது O
2
ஓடையை செலுத்தி விரைவாக வெட்டப்படுகின்றது.[65]

பிற பயன்கள்

ஆக்குசிசனேற்ற வினைக்குத் தேவையான ஆக்குசிசனைத் தரக்கூடிய பொருளை ஆக்குசிமம் (Oxidant) என்பர். ஏவுகணைகளில் எரிபொருள் எரிவதற்குத் தேவையான ஆக்சிசனை வழங்கும் பொருளையும் ஆக்குசிமம் என்பர். பொதுவாக ஏவுகணை, ஏவூர்திகளில் நீர்ம ஆக்சிசன், ஐதரசன் பெராக்சைடு அல்லது நைட்ரிக் அமிலம் ஆக்சிமம் ஆகக் கொள்ளப்படுகின்றன. உடலில் வளர் சிதை மாற்ற வினைகள் நடைபெறும் போதும் நுண்ணுயிரிகளுக்கு எதிராகத் தற்காப்பு செய்யும் போதும் தனித்த பகுதி மூலக்கூறுகள் (free radicals) உற்பத்தி செய்யப்படுகின்றன. மாசற்ற சுற்றுச் சூழலுக்கு அதிகம் இலக்காகும் போதும், புற ஊதக் கதிர்களின் தாக்குதலுக்கு ஆளாகும் போதும், புகைக்கும் போதும், நோய்வாய்ப்பட்டிருக்கும் போதும் தனித்த வீரியமான பகுதி மூலக்கூறுகளின் அளவு உடலில் அதிகரிக்கிறது. இதை அப்படியே விட்டுவிட்டால் இந்த நிலையற்ற தீமை பயக்கும் வேதிப் பொருள், இதய நோய், புற்று நோய்களைத் தூண்டுகிறது. இதைச் சரிக்கட்ட உடலுக்குத் தேவைப் படுவது எதிர் ஆக்குசிமம் (anti oxidant) ஆகும். உடல் இயற்கையாகவே எதிர் ஆக்சிமங்களை உற்பத்தி செய்கிறது. என்றாலும் இயல்பு மீறிய சூழ்நிலைகளில் அவை போதாமல் போய்விடுகின்றன. அதனால் எதிர் ஆக்சிமம் கொண்ட உணவுப் பொருட்களை உட்கொள்ள வேண்டியது அவசியமாகிறது.வைட்டமின் E,வைட்டமின் C, கரோட்டீன் என்ற வைட்டமின் A, தனிமங்களுள் செலினியம், செம்பு, துத்தநாகம், திராட்சைப் பழத்திலுள்ள பிளாவோனாய்டு (flavonoids) எதிர் ஆக்சிமம் பண்பைக் கொண்டுள்ளன.

பாதுகாப்பும் கவனமும்

என்.எப்.பி.ஏ 704 சீர்தரம் அழுத்தத்திலுள்ள ஆக்சிசன் உடல்நலத்திற்கு தீங்கில்லாததாகவும் எரியாததாகவும் வினையாற்றாததாகவும் ஆனால் ஆக்சிகரணியாக மதிப்பிட்டுள்ளது. செறிந்த ஆவியால் உயராக்சிசன் (hyperoxia) ஏற்படத் தீவாய்ப்பு, கடுங்குளிர் நீர்மங்களின் பொதுவான தீங்கான தோலுறைவு ஆகிய காரணங்களால் குளிரூட்டப்பட்ட நீர்ம ஆக்சிசனுக்கு (LOX) தீங்கு மதிப்பாக 3 தரப்பட்டுள்ளது; மற்ற மதிப்பீடுகள் அழுத்தப்பட்ட வளிமத்திற்குரியவையேயாம்.

நச்சியல்பு

A diagraph showing a man torso and listing symptoms of oxygen toxicity: Eyes – visual field loss, near)sightedness, cataract formation, bleeding, fibrosis; Head – seizures; Muscles – twitching; Respiratory system – jerky breathing, irritation, coughing, pain, shortness of breath, tracheobronchitis, acute respiratory distress syndrome.
ஆக்சிசன் நச்சுமையின் முதன்மை அறிகுறிகள்[66]
Four divers, equipped with oxygen cylinders, at the see bottom.
நுரையீரல்களில் வழமையான O
2
பகுதியழுத்தத்திற்கு கூடுதலாக 2 12 ஆக்சிசனை இழுக்கும்போது ஆக்சிசன் நச்சுமை ஏற்படுகிறது; ஆழ்நீர் இசுகூபா மூழ்கல்களில் இந்நிலை ஏற்பட வாய்ப்புண்டு.

வளிம ஆக்சிசன் (O
2
) உயர்ந்த பகுதியழுத்தங்களில் நச்சுத்தன்மை கொண்டதாக உள்ளது; வலிப்புகளும் பிற நலக்கேடுகளும் ஏற்படுகின்றன.[62][b][67] 50 கிலோபாசுக்கல்களுக்கு (kPa) கூடிய பகுதியழுத்தங்களில் ஆக்சிசன் நச்சுமை ஏற்படுகிறது; இது சீர்தர அழுத்தத்தில் ஏறத்தாழ 50% ஆக்சிசன் அடக்கம் அல்லது வழமையான கடல்மட்ட O
2
பகுதி அழுத்தமான 21 kPaக்கு 2.5 மடங்காகும்.

துவக்கத்தில், குறைப்பிரசவ மழலையர் O
2
-கூடிய காற்றுள்ள அடைப்பெட்டிகளில் வைக்கப்பட்டனர்; உயரிய ஆக்சிசனால் சில குழந்தைகளுக்கு கண் குருடானதால் தற்போது இச்செயல்முறை கைவிடப்பட்டுள்ளது.[20]

குறைந்த அழுத்தத்தில் பயன்படுத்துவதால் விண்வெளியில் தூய ஆக்சிசனை சுவாசிப்பது தீங்கானதல்ல.[68][69] விண்வெளியுடைகளில் சுவாசிக்கும் காற்றில் O
2
பகுதி அழுத்தம் 30 kPa (வழமையை விட 1.4 மடங்கு) ஆக உள்ளது; இது விண்ணோடியின் தமனிகளில் உள்ள ஆக்சிசன் பகுதி அழுத்தம் கடல்மட்டத்தில் இருப்பதை விட சற்றே கூடுதலாகும்.

ஆழ்கடல் இசுகூபா மூழ்கலிலும் தரைவழி சுவாசாதார மூழ்கலிலும் நுரையீரல்களிலும் மைய நரம்பு மண்டலத்திலும் ஆக்சிசன் நச்சுமை ஏற்படக்கூடும்.[20][62] பகுதி அழுத்தம் 60 kPa விடக் கூடுதலான O
2
உள்ள காற்றுக்கலவையை தொடர்ந்து சுவாசிப்பதால் நிரந்தர நுரையீரல் இழைமப்பெருக்கம் ஏற்படும்.[70] 160 kPa விடக் கூடுதலான பகுதியழுத்தம் தசைவலிப்புகளுக்கு வழிவகுக்கும்; இது மூழ்குவோருக்கு உயிருக்கே ஆபத்தாக முடியும்.[70][71][72][73]

எரிதலும் பிற இடையூறுகளும்

An inside of some device, charred and apparently destroyed.
அப்பல்லோ 1-இன் உட்புறம். உயரழுத்தத்தில் இருந்த தூய O
2
உம் தீப்பொறியும் தீ மூளவும் அப்பல்லோ 1 குழுவினர் உயிரிழக்கவும் காரணமாயிற்று.

செறிவான ஆக்சிசன் விரைவாக தீப்பிடிக்க உதவுகின்றது. ஆக்சிசனேற்றிகளும் எரிமங்களும் அருகருகே இருந்தால் நெருப்பு மற்றும் வெடித்தல் நிகழும் இடையூறுகள் உள்ளன. இருப்பினும் எரிதலைத் தூண்ட, வெப்பம், தீப்பொறி போன்றதோர் தீப்பற்றுதல் நிகழ்வு தேவை.[74] ஆக்சிசன் எரிபொருளல்ல, ஆனால் ஆக்சிசனேற்றியாகும். இத்தகைய தீவாய்ப்புகள் ஆக்சிசனின் சேர்மங்களான, பெராக்சைடு, குளோரேட்டுக்கள், நைத்திரேட்டுகள், பெர்குளோரேட்டுக்கள், மற்றும் குரோமேற்று மற்றும் இருகுரோமேற்றுகளிலும் உண்டு; இவை நெருப்புக்கு வேண்டிய ஆக்சிசனை வழங்கக் கூடியவை.

செறிந்த O
2
விரைவாகவும் ஆற்றலுடனும் தீப்பிடிக்க உதவுகிறது.[74] வளிம அல்லது நீர்ம ஆக்சிசனை சேகரிக்கவும் செலுத்தவும் பயனாகும் எஃகு குழாய்களும் சேகரிப்பு கலன்களும் எரிபொருளாக செயற்படும். எனவே ஆக்சிசனுக்கான அமைப்புக்களின் வடிவமைக்கவும் தயாரிக்கவும் சிறப்பான பயிற்சி தேவை; தீப்பற்றும் வாய்ப்புகள் குறைக்கப்பட வேண்டும்.[74]

மரம், பெட்ரோ வேதிப் பொருட்கள், அசுபால்ட்டு போன்ற கரிமப் பொருட்களில் நீர்மநிலை ஆக்சிசன் சிந்தி அவை நனைந்தால் பின்னெப்போதும் ஏற்படும் இயக்க மோதல்களின்போது வெடிக்கின்ற அபாயம் உண்டு.[74] மற்ற கடுங்குளிர் நீர்மங்களைப் போலவே மனித உடற் பகுதியுடன் தொடர்பேற்பட்டால் தோலுக்கும் கண்களுக்கும் தோலுறைவு ஏற்படும்.

இவற்றையும் பார்க்கவும்

குறிப்புகள்

  1. Figures given are for values up to 50 மைல்கள் (80 km) above the surface
  2. O
    2
    வின் பகுதி அழுத்தம் மொத்த அழுத்தத்தின் O
    2
    மடங்கு பின்னமாகையால், சுவாசிக்கும் வளிமத்தில் உயர்ந்த O
    2
    பகுதியாலோ அல்லது சுவாசிக்கும் வளிமத்தின் உயரழுத்தத்தாலோ அல்லது இரண்டும் கலந்தோ உயர்ந்த ஆக்சிசன் பகுதியழுத்தம் ஏறபடும்.

மேற்கோள்கள்

  1. "WebElements: the periodic table on the web – Oxygen: electronegativities". WebElements.com. பார்க்கப்பட்ட நாள் November 7, 2011.
  2. 2.0 2.1 Emsley 2001, p.297
  3. 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 Cook & Lauer 1968, p.500
  4. 4.0 4.1 4.2 Emsley 2001, p.298
  5. Figures given are for values up to 50 மைல்கள் (80 km) above the surface
  6. "WebElements Periodic Table of the Elements | Oxygen | Electronegativity". Webelements.com. பார்க்கப்பட்ட நாள் 2011-11-07.
  7. 7.0 7.1 "Oxygen". Los Alamos National Laboratory. Archived from the original on 2007-10-26. பார்க்கப்பட்ட நாள் 2007-12-16.
  8. உயிர்களின் தோற்றம் பரணிடப்பட்டது 2007-03-03 at the வந்தவழி இயந்திரம் அணுக்கம்: 5 மார்ச் 2007.
  9. PBS நோவா நிகழ்ச்சி. ஆண்டி நோல் அவர்களுடன் நேர்காணல்
  10. 10.0 10.1 Fenical, William (September 1983). "Marine Plants: A Unique and Unexplored Resource". Plants: the potentials for extracting protein, medicines, and other useful chemicals (workshop proceedings). DIANE Publishing. p. 147. பன்னாட்டுத் தரப்புத்தக எண் 1-4289-2397-7.
  11. Walker, J. C. G. (1980). The oxygen cycle in the natural environment and the biogeochemical cycles. Berlin: Springer-Verlag.
  12. Distribution of elements in the human body (by weight) Retrieved on 20012-09-07
  13. தேசிய வானூர்தியியல் மற்றும் விண்வெளி நிர்வாகம் (ஐக்கிய அமெரிக்கா)(2007 September 27). "NASA Research Indicates Oxygen on Earth 2.5 Billion Years ago". செய்திக் குறிப்பு. பார்க்கப்பட்டது: 2008-03-13.
  14. Brown, Theodore L., LeMay, Burslen (2003). Chemistry: The Central Science. Prentice Hall/Pearson Education. p. 958. பன்னாட்டுத் தரப்புத்தக எண் 0-13-048450-4.{{cite book}}: CS1 maint: multiple names: authors list (link)
  15. "Atomic oxygen erosion". Archived from the original on June 13, 2007. பார்க்கப்பட்ட நாள் August 8, 2009.
  16. 16.0 16.1 16.2 16.3 Parks, G. D., Mellor, J. W. (1939). Mellor's Modern Inorganic Chemistry (6th ed.). London: Longmans, Green and Co.{{cite book}}: CS1 maint: multiple names: authors list (link)
  17. 17.0 17.1 17.2 17.3 Cook & Lauer 1968, p.499.
  18. 18.0 18.1 18.2 Priestley, Joseph (1775). "An Account of Further Discoveries in Air". Philosophical Transactions 65: 384–94. doi:10.1098/rstl.1775.0039. 
  19. 19.0 19.1 19.2 19.3 19.4 19.5 19.6 Emsley 2001, p.300
  20. 20.0 20.1 20.2 20.3 Emsley 2001, p.299
  21. 21.0 21.1 "Air solubility in water". The Engineering Toolbox. பார்க்கப்பட்ட நாள் 2007-12-21.
  22. 22.0 22.1 22.2 Stwertka, Albert (1998). Guide to the Elements (Revised ed.). Oxford University Press. pp. 48–49. பன்னாட்டுத் தரப்புத்தக எண் 0-19-508083-1.
  23. "Molecular Orbital Theory". Purdue University. Archived from the original on 2008-05-10. பார்க்கப்பட்ட நாள் 2008-01-28.
  24. Chieh, Chung. "Bond Lengths and Energies". University of Waterloo. Archived from the original on 2007-12-14. பார்க்கப்பட்ட நாள் 2007-03-03.
  25. Pauling, L. (1960). The nature of the chemical bond and the structure of molecules and crystals : an introduction to modern structural chemistry (3rd ed.). Ithaca, N.Y.: Cornell University Press. பன்னாட்டுத் தரப்புத்தக எண் 0-8014-0333-2.
  26. Krieger-Liszkay, Anja (2004-10-13). "Singlet oxygen production in photosynthesis". Journal of Experimental Botanics (Oxford Journals) 56 (411): 337–46. doi:10.1093/jxb/erh237. பப்மெட்:15310815. 
  27. Harrison, Roy M. (1990). Pollution: Causes, Effects & Control (2nd ed.). Cambridge: Royal Society of Chemistry. பன்னாட்டுத் தரப்புத்தக எண் 0-85186-283-7.
  28. Chieh, Chung. "Bond Lengths and Energies". University of Waterloo. Archived from the original on 2007-12-14. பார்க்கப்பட்ட நாள் 2007-12-16.
  29. Jakubowski, Henry. "Biochemistry Online". Saint John's University. பார்க்கப்பட்ட நாள் 2008-01-28.
  30. Hirayama, Osamu; Nakamura, Kyoko; Hamada, Syoko; Kobayasi, Yoko (1994). "Singlet oxygen quenching ability of naturally occurring carotenoids". Lipids (Springer) 29 (2): 149–50. doi:10.1007/BF02537155. பப்மெட்:8152349. https://archive.org/details/sim_lipids_1994-02_29_2/page/149. 
  31. Wentworth Jr., Paul et al.; McDunn, JE; Wentworth, AD; Takeuchi, C; Nieva, J; Jones, T; Bautista, C; Ruedi, JM et al. (2002-12-13). "Evidence for Antibody-Catalyzed Ozone Formation in Bacterial Killing and Inflammation". Science 298 (5601): 2195–219. doi:10.1126/science.1077642. பப்மெட்:12434011. Bibcode: 2002Sci...298.2195W. 
  32. Cacace, Fulvio; de Petris, Giulia; Troiani, Anna (2001). "Experimental Detection of Tetraoxygen". Angewandte Chemie International Edition 40 (21): 4062–65. doi:10.1002/1521-3773(20011105)40:21<4062::AID-ANIE4062>3.0.CO;2-X. பப்மெட்:12404493. 
  33. Ball, Phillip (2001-09-16). "New form of oxygen found". Nature News. http://www.nature.com/news/2001/011122/pf/011122-3_pf.html. பார்த்த நாள்: 2008-01-09. 
  34. Evans, Claiborne, James B., David Hudson (2006). The Physiology of Fishes. CRC Press. p. 88. பன்னாட்டுத் தரப்புத்தக எண் 0-8493-2022-4.{{cite book}}: CS1 maint: multiple names: authors list (link)
  35. Lide, David R. (2003). "Section 4, Properties of the Elements and Inorganic Compounds; Melting, boiling, and critical temperatures of the elements". CRC Handbook of Chemistry and Physics (84th ed.). Boca Raton, Florida: CRC Press. பன்னாட்டுத் தரப்புத்தக எண் 0-8493-0595-0.
  36. "Overview of Cryogenic Air Separation and Liquefier Systems". Universal Industrial Gases, Inc. பார்க்கப்பட்ட நாள் 2007-12-15.
  37. "Liquid Oxygen Material Safety Data Sheet" (PDF). Matheson Tri Gas. Archived from the original (PDF) on 2008-02-27. பார்க்கப்பட்ட நாள் 2007-12-15.
  38. 38.0 38.1 "Oxygen Nuclides / Isotopes". EnvironmentalChemistry.com. Archived from the original on 2020-08-18. பார்க்கப்பட்ட நாள் 2007-12-17.
  39. 39.0 39.1 Meyer, B.S.(September 19–21, 2005). "Nucleosynthesis and Galactic Chemical Evolution of the Isotopes of Oxygen"(PDF). Proceedings of the NASA Cosmochemistry Program and the Lunar and Planetary Institute. 9022. 2007-01-22 அன்று அணுகப்பட்டது.
  40. "NUDAT 13O". பார்க்கப்பட்ட நாள் 2009-07-06.
  41. "NUDAT 14O". பார்க்கப்பட்ட நாள் 2009-07-06.
  42. "NUDAT 15O". பார்க்கப்பட்ட நாள் 2009-07-06.
  43. Croswell, Ken (February 1996). Alchemy of the Heavens. Anchor. பன்னாட்டுத் தரப்புத்தக எண் 0-385-47214-5.
  44. "Non-Cryogenic Air Separation Processes". UIG Inc. 2003. பார்க்கப்பட்ட நாள் December 16, 2007.
  45. 45.0 45.1 45.2 45.3 45.4 45.5 Emsley 2001, p.301
  46. ""For humans, the normal volume is 6–8 liters per minute."". Archived from the original on 2010-09-06. பார்க்கப்பட்ட நாள் 2012-09-25.
  47. (1.8 grams/min/person)×(60 min/h)×(24 h/day)×(365 days/year)×(6.6 billion people)/1,000,000 g/t=6.24 billion tonnes
  48. 48.0 48.1 48.2 Cook & Lauer 1968, p.510
  49. 49.0 49.1 Sim MA, Dean P, Kinsella J, Black R, Carter R, Hughes M (2008). "Performance of oxygen delivery devices when the breathing pattern of respiratory failure is simulated". Anaesthesia 63 (9): 938–40. doi:10.1111/j.1365-2044.2008.05536.x. பப்மெட்:18540928. https://archive.org/details/sim_anaesthesia_2008-09_63_9/page/938. 
  50. 50.0 50.1 Stephenson RN, Mackenzie I, Watt SJ, Ross JA (1996). "Measurement of oxygen concentration in delivery systems used for hyperbaric oxygen therapy". Undersea Hyperb Med 23 (3): 185–8. பப்மெட்:8931286. http://archive.rubicon-foundation.org/2245. பார்த்த நாள்: September 22, 2008. 
  51. Undersea and Hyperbaric Medical Society. "Indications for hyperbaric oxygen therapy". Archived from the original on மே 25, 2011. பார்க்கப்பட்ட நாள் September 22, 2008.
  52. Undersea and Hyperbaric Medical Society. "Carbon Monoxide". Archived from the original on July 25, 2008. பார்க்கப்பட்ட நாள் September 22, 2008.
  53. Piantadosi CA (2004). "Carbon monoxide poisoning". Undersea Hyperb Med 31 (1): 167–77. பப்மெட்:15233173. http://archive.rubicon-foundation.org/4002. பார்த்த நாள்: September 22, 2008. 
  54. Hart GB, Strauss MB (1990). "Gas Gangrene – Clostridial Myonecrosis: A Review". J. Hyperbaric Med 5 (2): 125–144. http://archive.rubicon-foundation.org/4428. பார்த்த நாள்: September 22, 2008. 
  55. Zamboni WA, Riseman JA, Kucan JO (1990). "Management of Fournier's Gangrene and the role of Hyperbaric Oxygen". J. Hyperbaric Med 5 (3): 177–186. http://archive.rubicon-foundation.org/4431. பார்த்த நாள்: September 22, 2008. 
  56. Undersea and Hyperbaric Medical Society. "Decompression Sickness or Illness and Arterial Gas Embolism". Archived from the original on July 5, 2008. பார்க்கப்பட்ட நாள் September 22, 2008.
  57. Acott, C. (1999). "A brief history of diving and decompression illness". South Pacific Underwater Medicine Society Journal 29 (2). பன்னாட்டுத் தர தொடர் எண்:0813-1988. இணையக் கணினி நூலக மையம்:16986801. http://archive.rubicon-foundation.org/6004. பார்த்த நாள்: September 22, 2008. 
  58. Agostini, D.; Iida, H.; Takahashi, A. (1995). "Positron emission tomography with oxygen-15 of stunned myocardium caused by coronary artery vasospasm after recovery". British Heart Journal 73 (1): 69–72. doi:10.1136/hrt.73.1.69. பப்மெட்:7888266. 
  59. Charles Henrickson (2005). Chemistry. Cliffs Notes. பன்னாட்டுத் தரப்புத்தக எண் 0-7645-7419-1.
  60. The reason is that increasing the proportion of oxygen in the breathing gas at low pressure acts to augment the inspired O
    2
    partial pressure nearer to that found at sea-level.
  61. Emsley, John (2001). "Oxygen". Nature's Building Blocks: An A-Z Guide to the Elements. Oxford, England, UK: Oxford University Press. pp. 297–304. பன்னாட்டுத் தரப்புத்தக எண் 0-19-850340-7.
  62. 62.0 62.1 62.2 Acott, C. (1999). "Oxygen toxicity: A brief history of oxygen in diving". South Pacific Underwater Medicine Society Journal 29 (3). பன்னாட்டுத் தர தொடர் எண்:0813-1988. இணையக் கணினி நூலக மையம்:16986801. http://archive.rubicon-foundation.org/6014. பார்த்த நாள்: 2008-09-21. 
  63. Longphre, J. M. et al.; Denoble, PJ; Moon, RE; Vann, RD; Freiberger, JJ (2007). "First aid normobaric oxygen for the treatment of recreational diving injuries". Undersea Hyperb Med. 34 (1): 43–49. பன்னாட்டுத் தர தொடர் எண்:1066-2936. இணையக் கணினி நூலக மையம்:26915585. பப்மெட்:17393938. http://archive.rubicon-foundation.org/5514. பார்த்த நாள்: 2008-09-21. 
  64. Undersea and Hyperbaric Medical Society. "Indications for hyperbaric oxygen therapy". Archived from the original on 2011-05-25. பார்க்கப்பட்ட நாள் 2008-09-22.
  65. Cook & Lauer 1968, p.508
  66. Dharmeshkumar N Patel, Ashish Goel, SB Agarwal, Praveenkumar Garg, Krishna K Lakhani (2003). "Oxygen Toxicity". Indian Academy of Clinical Medicine 4 (3): 234. http://medind.nic.in/jac/t03/i3/jact03i3p234.pdf. பார்த்த நாள்: 2014-11-14. 
  67. Cook & Lauer 1968, p.511
  68. Morgenthaler GW; Fester DA; Cooley CG (1994). "As assessment of habitat pressure, oxygen fraction, and EVA suit design for space operations". Acta Astronautica 32 (1): 39–49. doi:10.1016/0094-5765(94)90146-5. பப்மெட்:11541018. Bibcode: 1994AcAau..32...39M. https://archive.org/details/sim_acta-astronautica_1994-01_32_1/page/39. 
  69. Wade, Mark (2007). "Space Suits". Encyclopedia Astronautica. Archived from the original on December 13, 2007. பார்க்கப்பட்ட நாள் December 16, 2007.
  70. 70.0 70.1 Wilmshurst P (1998). "Diving and oxygen". BMJ 317 (7164): 996–9. doi:10.1136/bmj.317.7164.996. பப்மெட்:9765173. 
  71. Donald, Kenneth (1992). Oxygen and the Diver. England: SPA in conjunction with K. Donald. பன்னாட்டுத் தரப்புத்தக எண் 1-85421-176-5.
  72. Donald K. W. (1947). "Oxygen Poisoning in Man: Part I". Br Med J 1 (4506): 667–72. doi:10.1136/bmj.1.4506.667. பப்மெட்:20248086. 
  73. Donald K. W. (1947). "Oxygen Poisoning in Man: Part II". Br Med J 1 (4507): 712–7. doi:10.1136/bmj.1.4507.712. பப்மெட்:20248096. 
  74. 74.0 74.1 74.2 74.3 Werley, Barry L. (Edtr.)(1991). "Fire Hazards in Oxygen Systems". ASTM Technical Professional training, Philadelphia:அமெரிக்க மூலப்பொருள் மற்றும் பரிசோதனைக் குழுமம் Subcommittee G-4.05.

புற இணைப்புகள்

Read other articles:

Palacio Episcopal de Segovia Tipo palacio episcopalEstilo arquitectura del RenacimientoLocalización Segovia (España)Coordenadas 40°57′06″N 4°07′28″O / 40.951611111111, -4.1245277777778Construcción 1550Propietario Condado de Puñonrostro [editar datos en Wikidata] El Palacio Episcopal de Segovia es un edificio ubicado en el centro histórico de la ciudad española de Segovia. Fue residencia de los sucesivos obispos hasta 1969. Descripción El edificio, si...

 

A Rabbit's Foot theatre programme, c.1908, showing Pat Chappelle and unnamed performers The Rabbit's Foot Company, also known as the Rabbit('s) Foot Minstrels and colloquially as The Foots, was a long-running minstrel and variety troupe that toured as a tent show in the American South between 1900 and the late 1950s. It was established by Pat Chappelle, an African-American entrepreneur in Tampa, Florida. After his death in 1911, Fred Swift Wolcott bought the company. He was the white owner of...

 

You can help expand this article with text translated from the corresponding article in Chinese. (August 2019) Click [show] for important translation instructions. View a machine-translated version of the Chinese article. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text into the English Wikip...

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أبريل 2019) جوزيف دبليو. ووكر   معلومات شخصية الميلاد 21 أكتوبر 1952 (71 سنة)  مواطنة الولايات المتحدة  الحياة العملية المهنة لاعب كاراتيه  الرياضة كاراتيه  تعديل

 

Yang MuliaJosé Tolentino de MendonçaT.O.S.D. ComSE ComIHPrefek Dikasteri untuk Kebudayaan dan PendidikanMendonça pada 6 Oktober 2019GerejaGereja Katolik RomaPenunjukan26 September 2022Jabatan lainKardinal-Diakon Santi Domenico e Sisto (2019-)ImamatTahbisan imam28 Juli 1990oleh Teodoro de FariaTahbisan uskup28 Juli 2018oleh Manuel III, Kardinal-Patriark LisboaPelantikan kardinal5 Oktober 2019oleh Paus FransiskusPeringkatKardinal-DiakonInformasi pribadiNama lahirJosé Tolentino Cal...

 

  لمعانٍ أخرى، طالع ألبرت (توضيح). الأمير ألبرت ألبرت من ساكس-كوبرغ وغوتا (بالألمانية: Albert von Sachsen-Coburg-Gotha)‏  لوحة للأمير رسمها الفنان فرانز زافير وينتهالتر، رسمت عام 1842 معلومات شخصية اسم الولادة (بالألمانية: Franz Albert August Karl Emmanuel von Sachsen-Coburg-Gotha)‏،  و(بالإنجليزية: Francis Albe...

  لمعانٍ أخرى، طالع ويليام برنس (توضيح). هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (مارس 2019) ويليام برنس (بالإنجليزية: William Prince)‏  معلومات شخصية الميلاد سنة 1772[1]  مملكة أيرلندا  تاريخ الوفاة 8 سبت...

 

Football stadium in Kingston upon Thames, UK This article is about the football stadium in Kingston. For the school in Gateshead, see Kingsmeadow Community Comprehensive School. Kingsmeadow, Kingston upon ThamesFull nameKingsmeadowLocationJack Goodchild Way, Kingston upon Thames, London, EnglandPublic transit NorbitonOwnerChelseaOperatorChelseaCapacity4,850 (2,265 seated)Field size110 x 75 yardsSurfaceGrassConstructionBuilt1989Opened1989TenantsKingstonian (1989–2017)AFC Wimbledon (2002–20...

 

New Zealand by-election 1976 Nelson by-election ← 1975 general 28 February 1976 1978 general → Turnout17,470 (79.03%)   Candidate Mel Courtney Peter Malone Party Labour National Popular vote 8,418 6,913 Percentage 48.18 39.57 Member before election Sir Stanley Whitehead Labour Elected Member Mel Courtney Labour The Nelson by-election was a by-election in the New Zealand electorate of Nelson a predominantly urban seat at the top of the South Island. Background T...

Cet article est une ébauche concernant un homme politique et un militaire vietnamien. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Dương Văn Minh Fonctions Président du Conseil militaire révolutionnaire de la république du Viêt Nam(chef de l'État) 2 novembre 1963 – 30 janvier 1964 (2 mois et 28 jours) Prédécesseur Ngô Đình Diệm (président de la République) Successeur Nguyên Khanh...

 

Relikuarium berisi tengkorak Santo Ivo (Prancis: Saint Yves) di Tréguier, Bretagne, Prancis Di ranah agama, relikui adalah benda atau barang-barang peninggalan masa silam yang memiliki signifikansi keagamaan.[1] Relikui biasanya berupa sisa jasad atau barang-barang milik pribadi orang kudus atau tokoh lain yang dilestarikan sebagai kenang-kenangan untuk kepentingan venerasi. Relikui merupakan unsur penting di dalam beberapa aliran agama Buddha, Kristen, Islam, syamanisme, dan ban...

 

إبيسكوبي تقسيم إداري البلد اليونان  [1] التقسيم الأعلى քաղաքապետարանը Նաուսա  [لغات أخرى]‏  خصائص جغرافية إحداثيات 40°41′16″N 22°08′12″E / 40.68777778°N 22.13666667°E / 40.68777778; 22.13666667  الارتفاع 80 متر  السكان التعداد السكاني 1623 (إحصاء السكان) (2011)  معلومات ...

Ramiro MegíasInformación personalNacimiento 1961 Nacionalidad EspañolaEducaciónEducado en Universidad de Sevilla Información profesionalOcupación Escultor y profesor universitario Empleador Universidad de Granada [editar datos en Wikidata] Ramiro Megías López (Granada, 1961) es un escultor español y profesor en la Facultad de Bellas Artes Alonso Cano de Granada, miembro de la Real Academia de Bellas Artes de Santa Isabel de Hungría[1]​ y de la Real Academia de Bellas...

 

Luo Nilotic ethnic group in the East AfricaThis article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Anuak people – news · newspapers · books · scholar · JSTOR (June 2020) (Learn how and when to remove this template message) AnyuakAnywaak children in Dimma, EthiopiaTotal population250,000-300,000[1]Regions wit...

 

49-й Характеристики Экипаж 2 чел. Тип Скифф[en] Конструкция Стеклопластик, углепластик Трапеция 2 шт. Наибольшая длина 4.876 м Ширина габаритная 2,743 м (с крыльями) Осадка 1.447 м Масса корпуса 94 кг Ширина корпуса 1,752 м D-PN 68,2 RYA PN 740 Площадь парусов в т.ч. грот 20 м² (со стакселем) в т.ч. ге...

Leningrad Codex (cover page E, folio 474a) Kodeks Leningrad (bahasa Inggris: Leningrad Codex) adalah naskah lengkap Alkitab Ibrani paling kuno yang ditulis dalam abjad Ibrani, yang menggunakan Teks Masoret dan vokalisasi Ibrani Tiberias sebagai sumber.[1] Kodeks ini ditulis sekitar tahun 1008 Masehi hingga 1009 Masehi.[1] Jadi Kodeks Aleppo beberapa dekade lebih tua dibandingkan dengan Leningrad Codex ini.[1] Namun, ada bagian Kodeks Aleppo yang hilang sejak tahun ...

 

2018 studio album by BoAWomanDigital coverStudio album by BoAReleasedOctober 24, 2018 (2018-10-24)Recorded2018GenreK-popLength33:57LabelSMBoA chronology One Shot, Two Shot(2018) Woman(2018) Starry Night(2019) Singles from Woman WomanReleased: October 24, 2018 Music videoWoman on YouTube Woman is the ninth Korean-language studio album (nineteenth overall) by South Korean singer-songwriter BoA. It was released on October 24, 2018, by SM Entertainment, with distribution by...

 

Questa voce o sezione sull'argomento centri abitati della Spagna non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Segui i suggerimenti del progetto di riferimento. Melgar de Abajocomune Melgar de Abajo – Veduta LocalizzazioneStato Spagna Comunità autonoma Castiglia e León Provincia Valladolid TerritorioCoordinate42°15′00″N 5°07′59....

Neighborhood of historical district of Moscow At the German Quarter by Alexandre Benois (1911) The German Quarter (Russian: Немецкая слобода, romanized: Nemetskaya sloboda), also known as the Kukuy Quarter (Кукуйская слобода), was a neighbourhood in the northeast of Moscow, located on the right bank of the Yauza River east of the former Kukuy Creek (hence the name Kukuy Quarter), within the present-day Basmanny District of Moscow. Its boundaries were define...

 

This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Koivisto I Cabinet – news · newspapers · books · scholar · JSTOR (October 2016) (Learn how and when to remove this template message) Mauno Koivisto's cabinet was the 51st government of Finland, which lasted from 22 March 1968 to 14 May 1970. It was a majority government which wa...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!