Za čas, ki ga potrebuje telo iz začetne do končne točke, se dobi:
če je kvadrat elementa ločne dolžine. Določiti je treba tiry(x), pri katerem je pri dani začetni in končni točki čas t najkrajši. Takšne naloge sodijo v variacijski račun. Rešitev je cikloida, parametrično:
Krivuljo se dobi, če se misli, da se krog s polmerom rkotali po spodnji strani x. Hitro se ugotovi, da je:
in čas:
Zgodovina
Problem brahistokrone je postavil Johann Bernoulli in zanj leta 1696 prvi objavil rešitev, ki pa naj bi bila v resnici rešitev njegovega brata Jakoba.[1] Spada med variacijske probleme, Johann Bernoulli pa velja za očeta variacijskega računa. Splošno nalogo za brahistokrono je rešil Leonhard Euler leta 1774.