Funzione periodica

Esempio di una funzione periodica. Con P è indicato il periodo.

In matematica, a livello intuitivo, per funzione periodica si intende una funzione che assume valori che si ripetono esattamente a intervalli regolari.

Definizione

Una funzione definita su un gruppo abeliano è periodica di periodo , con , se per ogni .

Funzioni di variabile reale

Le funzioni periodiche più note sono le funzioni reali di variabile reale. Formalmente, una funzione reale si dice periodica di periodo se esiste un numero reale tale che:

  • il dominio è invariante per traslazione di , ovvero ;
  • la funzione è invariante per traslazione di , ovvero per ogni si ha .

Moduli

Se è periodica di periodo ed è periodica di periodo , allora è periodica di ogni periodo

.

L'insieme dei periodi di è quindi uno -modulo.

  • Se , ovvero se ha il solo periodo , allora è detta aperiodica.
  • Se è un modulo libero di dimensione , ovvero se con , ovvero se esiste un minimo tra i periodi , allora è detta periodica di periodo minimo , o periodica di periodo in senso stretto.
  • Il modulo non è necessariamente libero di dimensione o , ovvero potrebbe non esistere un minimo periodo strettamente positivo; ad esempio, la funzione di Dirichlet ha e non è né aperiodica né periodica in senso stretto.

Domini limitati

Da ogni funzione a valori reali definita su un dominio limitato si può definire una funzione periodica, di periodo maggiore o uguale all'ampiezza del dominio. Ad esempio, la funzione identità ristretta all'intervallo ,

definisce una funzione periodica di periodo 1 definita su tutti i reali: la parte frazionaria

Esempi

  • Le funzioni trigonometriche seno e coseno sono periodiche di periodo minimo .
  • Sono quindi automaticamente periodiche le funzioni:
    • e , che hanno periodo minimo ;
    • e , che hanno periodo minimo .

Funzioni doppiamente periodiche

Una funzione può ammettere due o più periodi non commensurabili (la definizione dipende dalle caratteristiche che si richiedono al dominio).

Ad esempio, una funzione ellittica è una funzione doppiamente periodica:

è definita dall'insieme dei numeri complessi in sé, ;
è periodica rispetto a due periodi, ;
questi due periodi sono "incommensurabili",

Voci correlate

Altri progetti

Collegamenti esterni

Controllo di autoritàThesaurus BNCF 34383 · LCCN (ENsh85099883 · GND (DE4224901-6 · BNF (FRcb12288235k (data) · J9U (ENHE987007536403405171 · NDL (ENJA00572380
  Portale Matematica: accedi alle voci di Wikipedia che trattano di matematica

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!