Lo studio delle equazioni differenziali ha avuto inizio in seguito all'introduzione del calcolo infinitesimale da parte di Newton e Leibniz nel XVII secolo. Nel secondo capitolo del suo testo del 1671 Methodus fluxionum et serierum infinitarum[1], Isaac Newton focalizza il discorso su tre tipologie di equazioni differenziali di primo grado, di cui due ordinarie:
Ne risolve inoltre un esempio per ognuna delle tipologie, esprimendo il termine non derivato come serie di potenze e ponendo che abbiano come soluzione delle serie infinite, di cui nota che i coefficienti possono essere scelti in maniera arbitraria producendo così un'infinità di soluzioni particolari.[2]
per la quale Leibniz, l'anno successivo, ottiene delle soluzioni semplificandola ad un'equazione lineare.[4] L'anno successivo il fratello Johann si occupa invece del problema della curva brachistocrona.
Le equazioni differenziali sono tra le equazioni più studiate in matematica, avendo un ruolo fondamentale nella controparte matematica di moltissimi ambiti della scienza e dell'ingegneria. Possono descrivere, per esempio, una situazione generale in cui una certa quantità varia rispetto al tempo in una maniera che dipende dal valore della quantità stessa in quel momento: ciò corrisponde al fatto che nell'equazione compare sia la funzione incognita che la sua derivata rispetto al tempo . Nel caso più semplice compare solo la derivata:
Si tratta tuttavia di relazioni di cui è raramente possibile avere una forma analitica della soluzione, o una sua espressione in termini di funzioni elementari, ma vengono piuttosto studiate l'esistenza e l'unicità delle soluzioni e il loro comportamento in contesti di particolare interesse, solitamente in relazione alla situazione di un sistema fisico descritto dall'equazione differenziale. L'insieme di tutte le soluzioni di un'equazione differenziale è detto integrale generale dell'equazione differenziale data.
Lo studio delle equazioni differenziali, come avviene spesso in matematica, è stato fortemente influenzato dall'esigenza di analizzare problemi concreti; coinvolge poi diversi ambiti, come l'algebra lineare, l'analisi numerica e l'analisi funzionale.
Definizione
Data una funzione definita in un intervallo dell'insieme dei numeri reali, l'equazione differenziale ad essa associata è un'equazione differenziale ordinaria (abbreviato con ODE, acronimo di Ordinary Differential Equation) e si chiama ordine o grado dell'equazione il più alto ordine tra gli ordini delle derivate presenti nell'equazione. La scrittura generale di un'equazione differenziale ordinaria di ordine per una funzione può avere la forma:
dove sono le derivate di fino all'ordine . Se è lineare, l'equazione è lineare. Per esempio, l'equazione differenziale di primo ordine:
Nel caso in cui la funzione incognita dipende da più variabili, le derivate sono derivate parziali e si ha un'equazione differenziale alle derivate parziali (abbreviato con PDE, da Partial Differential Equation). Una PDE di ordine per la funzione ha la forma:
Le equazioni differenziali vengono analizzate conferendo un preciso valore ad alcune delle variabili in gioco, in particolare la funzione incognita e le sue derivate (fino all'ordine per un'equazione in forma normale di ordine ) in certi punti del dominio di definizione dell'equazione. Il problema differenziale che ne risulta è detto "problema di Cauchy"; consiste solitamente nel porre delle condizioni iniziali o delle condizioni al contorno per gli estremi del dominio in cui è definita l'equazione.
Nel caso l'equazione sia definita su una superficie, fornire le condizioni al contorno consiste nel dare il valore della funzione sulla frontiera o della sua derivata rispetto alla direzione normale alla frontiera. Tale assegnazione viene detta condizioni al contorno di Cauchy, e corrisponde ad imporre sia le condizioni al contorno di Dirichlet (i valori che la soluzione assume sul bordo della superficie) che le condizioni al contorno di Neumann (i valori della derivata della soluzione).
esiste una sola funzione che soddisfa tutte le relazioni se è sufficientemente regolare, ad esempio se è differenziabile in un intorno di .
Per un'equazione alle derivate parziali di ordine definita su le condizioni iniziali sono date dal valore dell'incognita e delle sue derivate fino all'ordine su una varietà liscia di dimensione , detta talvolta "superficie di Cauchy". Il problema di Cauchy consiste, nello specifico, nel trovare la funzione soluzione della PDE che soddisfa:
dove sono funzioni date definite sulla superficie e la derivata è calcolata rispetto alla direzione del versore normale a .[11]
Il teorema di Cauchy-Kovalevskaya, che si applica sia per le equazioni alle derivate parziali che per quelle ordinarie, stabilisce che se l'incognita e le condizioni iniziali di un'equazione differenziale sono localmente funzioni analitiche allora una soluzione analitica esiste ed è unica.[12]
Un'equazione differenziale alle derivate parziali può essere invece lineare, semilineare, quasilineare o totalmente non lineare. L'equazione si dice lineare se ha la forma:
per opportune funzioni ed , dove è la derivazione di ordine rispetto ad una o più variabili. Se l'equazione si dice omogenea.
Si dice semilineare se ha la forma:
quasilineare se ha la forma:
e totalmente non lineare se dipende non-linearmente dal più alto grado di derivazione.
Le equazioni che non sono lineari sono spesso molto difficili da affrontare, ed in molti casi si cercano metodi per linearizzarle.
PDE del secondo ordine
Una classe di equazioni alle derivate parziali di cui si trovano frequentemente soluzioni analitiche, e che sono ampiamente utilizzate in fisica ed ingegneria, sono le equazioni lineari del secondo ordine, ovvero del tipo:
Supponendo che , e non siano tutti nulli, i termini con le derivate seconde definiscono una forma quadratica nel punto :[14]
Ellittica se . In tal caso tutti gli autovalori di sono tutti positivi o tutti negativi.
Parabolica se . In tal caso ha almeno un autovalore nullo.
Le equazioni a coefficienti costanti sono iperboliche, ellittiche o paraboliche in tutti i punti del loro dominio, ed in tal caso si parla rispettivamente di "equazione iperbolica", "equazione ellittica" o "equazione parabolica". Ad esempio l'equazione di Poisson (e la sua versione omogenea, l'equazione di Laplace) è ellittica, l'equazione del calore è parabolica, e l'equazione delle onde è iperbolica.
Le equazioni a coefficienti non costanti possono tuttavia presentare un carattere "misto", cioè possono essere iperboliche in alcune regioni del dominio ed ellittiche o paraboliche in altre. Ad esempio l'equazione di Eulero-Tricomi:
è ellittica nella regione , iperbolica nella regione e parabolica degenere sulla retta .
Questa sezione sull'argomento matematica è ancora vuota. Aiutaci a scriverla!
Esempio
Un esempio elementare di come le equazioni differenziali possano emergere naturalmente nello studio dei sistemi è il seguente: si supponga di avere una popolazione di batteri composta inizialmente da individui e sia la popolazione al tempo . È ragionevole aspettarsi che, in media, in ogni istante dopo un tempo relativamente piccolo nasca una quantità di nuovi individui proporzionale alla popolazione e al tempo trascorso , cioè pari a , dove è un numero (che si suppone costante) che individua il tasso di natalità. Analogamente è ragionevole aspettarsi che muoiano individui nello stesso intervallo di tempo, essendo il tasso (costante) di mortalità. La popolazione al tempo , quindi, sarà data dalla popolazione al tempo a cui si aggiunge la popolazione appena nata e si sottrae quella morta, ovvero:
Quindi si ha che:
Si può riconoscere nell'espressione a primo membro il rapporto incrementale della funzione ; se è molto piccolo, tale rapporto verrà sostituito con la derivata e si scriverà:
Questa è un'equazione differenziale ordinaria del primo ordine. Risolvere questa equazione significa determinare l'andamento nel tempo della popolazione, cioè la funzione . Si sta cercando quindi una funzione che sia dimensionalmente sommabile alla sua derivata prima, ovvero la funzione esponenziale (la cui derivate sono la funzione stessa per una costante):
dove e sono costanti. Imponendo di rispettare il vincolo si ha:
Si tratta di una funzione esponenziale che cresce nel tempo se , cioè se la natalità è maggiore della mortalità, e decresce fino ad annullarsi velocemente se . Il modello che si è esaminato è particolarmente semplificato; in generale il tasso di crescita non è semplicemente proporzionale alla popolazione presente con una costante fissa di proporzionalità: è ragionevole aspettarsi ad esempio che le risorse a disposizione siano limitate ed insufficienti a soddisfare una popolazione arbitrariamente grande. Si possono considerare, inoltre, situazioni più complicate come quella in cui ci siano più popolazioni che interagiscono tra loro, come ad esempio prede e predatori nel modello di Volterra-Lotka.
Soluzioni
Solitamente non è possibile trovare soluzioni esatte per le equazioni differenziali. Invece che trovare un'espressione analitica di una funzione che soddisfi l'equazione si è spesso limitati a studiarne l'esistenza e l'andamento qualitativo, oppure se ne determinano soluzioni approssimate servendosi di computer in grado di effettuare approssimazioni tramite metodi di calcolo numerici. Nel corso dei secoli sono tuttavia stati trovati diversi casi in cui è possibile ricavare l'espressione analitica di funzioni che sono soluzione di un'equazione differenziale, così come sono stati sviluppati molti strumenti di vario tipo per la ricerca di tali soluzioni: per affrontare le equazioni ordinarie si può ricorrere ad esempio all'utilizzo di un fattore di integrazione, del metodo delle differenze finite, del metodo delle variazioni delle costanti e diversi altri metodi di soluzione analitica e numerica.
Per quanto riguarda le equazioni alle derivate parziali, non vi è una teoria generale per analizzarle, ma vi sono casi in cui è possibile trovare una soluzione unica che dipende in modo continuo dai dati forniti dal problema. Tali soluzioni sono dette "classiche", e si distinguono da soluzioni deboli o generalizzate. Tra i molti metodi utilizzati per studiare le PDE vi è il metodo delle caratteristiche, l'utilizzo della funzione di Green, diverse trasformate integrali o il metodo di separazione delle variabili.
Le soluzioni numeriche sono degli algoritmi che permettono di approssimare la soluzione del sistema di equazioni differenziali che costituiscono il modello matematico del sistema. Questi algoritmi sono alla base dei software di simulazione come MATLAB/Simulink ed in linea generale possono risolvere anche problemi che non ammettono soluzioni in forma chiusa.
^Newton, Isaac. (c.1671). Methodus Fluxionum et Serierum Infinitarum (The Method of Fluxions and Infinite Series), published in 1736 [Opuscula, 1744, Vol. I. p. 66].
^Jacob Bernoulli, Explicationes, Annotationes & Additiones ad ea, quae in Actis sup. de Curva Elastica, Isochrona Paracentrica, & Velaria, hinc inde memorata, & paratim controversa legundur; ubi de Linea mediarum directionum, alliisque novis, in Acta Eruditorum, 1695.