Punto di accumulazione

In matematica il punto di accumulazione è uno dei concetti principali dell'analisi matematica e della topologia.

Definizione

Dato l'insieme e (non interessa che appartenga ad o meno), si dice che è punto di accumulazione per l'insieme se in ogni intorno di esiste almeno un elemento diverso da e appartenente ad [1]. In formule:

Intuitivamente questo significa che arbitrariamente vicino a ci sono sempre punti di (diversi da ).

La definizione di punto di accumulazione è la negazione di quella di punto isolato.

Generalizzazioni

La nozione di punto di accumulazione è generalizzata agli spazi metrici e topologici; in entrambi i casi un punto è di accumulazione per un insieme se l'insieme contiene punti "arbitrariamente vicini" ad . La nozione di "arbitrariamente vicino" è formalizzata in modo appropriato, a seconda che lo spazio sia munito di una metrica o soltanto di una topologia.

Spazi topologici

In topologia un punto appartenente ad uno spazio topologico è un punto di accumulazione per un sottoinsieme di se qualsiasi aperto contenente interseca in almeno un punto diverso da . In simboli:

Spazi metrici

In uno spazio metrico, se si considera la topologia naturale indotta dalla metrica, la definizione introdotta precedentemente è equivalente alla seguente:

dove è la palla di raggio e centro . In altre parole, ogni palla centrata in interseca in qualche punto diverso da .

Nel caso di spazi metrici, se è punto di accumulazione per , allora è possibile trovare punti di , distinti da a distanza arbitrariamente piccola da . Dunque in ogni intorno di cadono infiniti punti di .

Nozioni correlate

L'insieme dei punti di accumulazione di è detto insieme derivato di e si indica di solito con .

Note

  1. ^ accumulazione, punto di in "Enciclopedia della Matematica", su treccani.it. URL consultato il 17 aprile 2021.

Voci correlate

Collegamenti esterni

  Portale Matematica: accedi alle voci di Wikipedia che trattano di matematica

Read other articles:

Untuk kegunaan lain, lihat Bima (disambiguasi). Bahasa Mbojo (Bima-Dompu) Mbojo[1] 'Aksara Mbojo'Dituturkan diIndonesiaWilayah  Nusa Tenggara Barat  Nusa Tenggara Timur Etnissuku MbojoPenutur1.230.000 (2022)Rumpun bahasaMelayu-Polinesia MP Tengah-TimurMP TengahSumba-Flores/Bima-SumbaBahasa Mbojo (Bima-Dompu) Kode bahasaISO 639-1-ISO 639-2-ISO 639-3bhp  Portal BahasaSunting kotak info • L • B • PWBantuan penggunaan templat ini Bahasa Bima atau N...

 

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (يونيو 2019) الحدثكأس إيطاليا 1963–64 نادي روما نادي تورينو 1 0 التاريخ1 نوفمبر 1964  الملعبملعب تورينو الأولمبي  →نها...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أغسطس 2022) أوبن إيديكسالشعارمعلومات عامةنوع نظام إدارة التعلم النموذج المصدري حقوق التأليف والنشر محفوظة المدونة الرسمية openedx.org… (الإنجليزية) موقع الويب open.edx.org (الإنج

Map all coordinates using: OpenStreetMap Download coordinates as: KML GPX (all coordinates) GPX (primary coordinates) GPX (secondary coordinates) This list is of the Cultural Properties of Japan designated in the category of paintings (絵画, kaiga) for the Prefecture of Aichi.[1] National Cultural Properties As of 1 July 2020, fifty-one Important Cultural Properties have been designated (including two *National Treasures), being of national significance.[2][3] Proper...

 

Rio FirdiantoWaasintel Kasad Bidang Inteltek dan HubluPetahanaMulai menjabat 16 Januari 2023PendahuluBudi HariswantoDansat Intel Bais TNIMasa jabatan18 November 2020 – 21 Januari 2022PendahuluR. Agus Renaldi KusumaPenggantiDedi Nurhadiman, S.IPAsintel Kaskogabwilhan IIMasa jabatan29 November 2019 – 18 November 2020PendahuluPejabat PertamaPenggantiR.Agus Renaldi KusumaDangrup - D PaspampresMasa jabatan24 April 2015 – 9 September 2016PendahuluNovi Helmy Pras...

 

Works on the provinces and territories of Canada An enlargeable map of Canada, showing its ten provinces and three territories. This is a bibliography of works on the Provinces and territories of Canada. Provinces and territories Alberta Main article: Bibliography of Alberta history Berry, Susan; Jack Brink (2004), Aboriginal Cultures in Alberta: Five Hundred Generations, Provincial Museum of Alberta, ISBN 0-7785-2852-9 Cavanaugh, Catherine Anne (2006), Alberta formed, Alberta transforme...

Secretaría de Educación, Ciencia, Tecnología e Innovación de la Ciudad de México Secretaría de Educación, Ciencia, Tecnología e Innovación de la Ciudad de México LocalizaciónPaís México MéxicoInformación generalSigla SECTEIJurisdicción Ciudad de MéxicoTipo ministerio de EducaciónSede Ciudad de MéxicoAv Chapultepec 49, Colonia Centro, Centro, 06010 Ciudad de MéxicoOrganizaciónSecretaria Jesús Ofelia Angulo GuerreroDepende de Gobierno de la Ciudad de MéxicoEntidad...

 

Гончаренко Богдан Анатолійович  Молодший сержант Загальна інформаціяНародження 7 жовтня 1991(1991-10-07)МелітопольСмерть 13 квітня 2015(2015-04-13) (23 роки)АвдіївкаВійськова службаРоки служби 2014-2015Приналежність  УкраїнаВид ЗС  Повітряні силиФормування  25 БрТрАВійни / битв...

 

Trinidadian-American actor and dancer (1930–2014) Geoffrey HolderHolder at the Big Apple Con 2008BornGeoffrey Lamont Holder(1930-08-01)August 1, 1930Port of Spain, Trinidad and TobagoDiedOctober 5, 2014(2014-10-05) (aged 84)New York City, U.S.Alma materQueen's Royal CollegeOccupation(s)Actor, voice actor, singer, dancer, composer, choreographer, directorYears active1957–2014Spouse Carmen de Lavallade ​(m. 1955)​Children1FamilyBoscoe Holder (brot...

Colloquialism for Jewish New Year holiday, 10 Days of Awe, Repentance and Atonement For other uses, see High Holy Days (disambiguation). See also: Jewish holidays Ashkenazi-style shofar. The shofar is used during the High Holy Days. In Judaism, the High Holy Days, also known as High Holidays or Days of Awe (Yamim Noraim; Hebrew: יָמִים נוֹרָאִים, Yāmīm Nōrāʾīm) consist of: strictly, the holidays of Rosh Hashanah (Jewish New Year) and Yom Kippur (Day of Atonement); by exte...

 

Bound and self-contained mathematical expression This article's factual accuracy is disputed. Relevant discussion may be found on the talk page. Please help to ensure that disputed statements are reliably sourced. (November 2015) (Learn how and when to remove this template message) This article may need to be rewritten to comply with Wikipedia's quality standards. You can help. The talk page may contain suggestions. (November 2015) A supercombinator is a mathematical expression which is fully...

 

Norman earl (c. 1011–2022) The Earl of HerefordCoat of arms of William FitzOsbernBornc. 1011Died22 February 1071(1071-02-22) (aged 60–61)FlandersCause of deathWarKnown for Lord of Breteuil Earl of Hereford companion of William the Conqueror TitleThe Earl of Hereford Lord of BreteuilSpouseAdeliza de TosnyChildren William of Breteuil Roger de Breteuil Emma de Breteuil Parent(s)Osbern the Steward and Emma of IvryRelatives Rodulf of Ivry (maternal grandfather) Osbern FitzOsbern...

American politician Jeff ShipleyMember of the Iowa House of Representativesfrom the 87th districtIncumbentAssumed office January 14, 2019Preceded byPhil Miller Personal detailsBorn (1988-08-09) August 9, 1988 (age 35)Euclid, Ohio, U.S.Political partyRepublicanResidence(s)Fairfield, Iowa, U.S.Alma materUniversity of Iowa (B.A.) Jeff Shipley (born August 9, 1988), is an American politician from the state of Iowa currently serving in the Iowa House of Representatives as the ...

 

U-18 Men's Softball World CupCurrent season, competition or edition: 2023 U-18 Men's Softball World CupSportSoftballNo. of teams12 (finals)ContinentInternationalMost recentchampion(s) Japan (4th title)Most titles Australia (5 titles) The U-18 Men's Softball World Cup (in spanish: Campeonato Mundial juvenil de softball masculino) is a fastpitch softball tournament for age 19-and-under national teams held every four years by the World Baseball Softball Confederation, formerly the ...

 

2004 single by Nami TamakiShining Star☆ 忘れないから ☆ (Wasurenaikara)Single by Nami Tamakifrom the album Greeting ReleasedJanuary 28, 2004 (2004-01-28)GenrePopNami Tamaki singles chronology Prayer Shining Star Daitan ni Ikimashō Shining Star Wasurenai Kara (忘れないから) is Nami Tamaki's fourth single. It was used as the ending theme for the TV Variety show Matthew's Best Hit TV.[1] It reached number 9 on the Oricon chart.[2] Track listing Shin...

Swedish music producer and singer For other people named Robin Cook, see Robin Cook (disambiguation). Jonas Ekfeldt Jonas Ekfeldt (born 29 June 1971) is a Swedish music producer and singer. In 1996, using the name Robin Cook, he released the single I Won't Let the Sun Go Down (a cover of Nik Kershaw's 1983 debut I Won't Let the Sun Go Down on Me) followed by a cover of Raggio Di Luna's Comanchero and the album Land of Sunshine in 1997. Ekfeldt sang and produced I Won't Let the Sun Go Down and...

 

ベンゾジアゼピン離脱症候群概要診療科 精神医学分類および外部参照情報ICD-10 F13.3GeneReviews [ウィキデータで編集] ベンゾジアゼピン離脱症候群(ベンゾジアゼピンりだつしょうこうぐん、Benzodiazepine withdrawal syndrome)は、ベンゾジアゼピン系薬の服用により身体的依存が形成されてから、用量を減量するか、断薬することによって生じる一連の離脱症状。その症状...

 

New Zealand biological anthropologist Lisa Matisoo-SmithLisa Matisoo-Smith in November 2020Born1963 (age 59–60)Alma materUniversity of AucklandScientific careerFieldsmolecular anthropologyInstitutionsUniversity of OtagoThesis No hea te kiore : MtDNA variation in Rattus exulans : a model for human colonisation and contact in prehistoric Polynesia (1996) Lisa Matisoo-Smith (born 1963) is a molecular anthropologist and Professor at the University of Otago.[1 ...

Voce principale: Calcio Catania. Calcio CataniaStagione 1970-1971 Sport calcio Squadra Catania Allenatore Egizio Rubino Presidente Angelo Massimino Serie A16° (retrocessa in Serie B) Coppa ItaliaPrimo turno Coppa MitropaOttavi di finale Maggiori presenzeCampionato: Bernardis (30) Miglior marcatoreCampionato: Bonfanti (5) StadioCibali 1969-1970 1971-1972 Si invita a seguire il modello di voce Questa voce raccoglie le informazioni riguardanti il Calcio Catania nelle competizioni ufficial...

 

В Википедии есть статьи о других людях с фамилией Тесля. Павел Иванович Тесля Дата рождения 1914(1914) Место рождения Акбулак, Оренбургский уезд[1], Оренбургская губерния, Российская империя Дата смерти 1983(1983) Гражданство  Российская империя/ СССР/ Россия Награды и...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!