Modulo di continuità

In matematica, il modulo di continuità è uno strumento per misurare il comportamento di una funzione. È un modo per descrivere quantitativamente la dipendenza di da nella definizione di uniforme continuità.

Storia

La definizione è stata introdotta da Henri Lebesgue nel 1910 in riferimento all'oscillazione di una trasformata di Fourier, ma il concetto era conosciuto già da tempo. De la Vallée Poussin nel 1919 nominava come termine alternativo "modulo di oscillazione", ma concludeva "ma continueremo a usare "modulo di continuità" per sottolineare l'uso che vogliamo farne".

Definizione

Siano una funzione di dominio aperto a valori in , un punto di e un numero reale positivo. Si definisce modulo di continuità locale di in una funzione tale che

È invece detto modulo di continuità globale una funzione tale che

La definizione si può facilmente estendere a funzioni tra spazi normati sostituendo al modulo la norma dello spazio selezionato. Il modulo di continuità misura l'uniforme continuità della funzione .

Proprietà

Si dimostra che è continua in se e solo se essa ammette un modulo di continuità locale tale che .
Analogamente, si dimostra che una funzione è uniformemente continua se e solo se ammette un modulo di continuità globale tale che
Un insieme di funzioni continue è equicontinuo se e solo se le funzioni ammettono un modulo di continuità comune.

Esempi

La connessione tra regolarità in termini di funzione liscia e modulo di continuità per funzioni definita sull'intera retta reale è molto delicata. Basti ad esempio la considerazione che, se , per ogni , anche se è infinitamente differenziabile. La discussione si fa più particolareggiata se il dominio è un intervallo chiuso (più in generale uno spazio compatto).

Per una funzione derivabile su un intervallo, con derivata limitata, il modulo di continuità ha crescita sub-lineare, cioè soddisfa:

per una costante che risulta dipendente dal valore assoluto della sua derivata.

Le funzioni hölderiane corrispondono a precisi moduli di continuità. appartiene alla classe se e solo se:

per qualche costante .

Ribaltando il punto di vista, affinché una funzione definita sui reali positivi sia il modulo di continuità di una qualche funzione continua, è condizione necessaria e sufficiente che essa sia non decrescente, continua, subadditiva e che .

Moduli di continuità di ordine superiore

Dalla considerazione che:

dove è la differenza finita di prim'ordine di in , sostituendo tale differenza con una di ordine superiore otteniamo un modulo di continuità di ordine :

Bibliografia

  • Ch. de la Vallée Poussin, L'approximation des fonctions d'une variable réelle, Gauthier-Villars, Paris, 1919.
  • G. Choquet, Cours D'Analyse. Tome II, Topologie, Masson et Cie, Paris, 1964.
  • Ch. de la Vallée Poussin, L'approximation des fonctions d'une variable réelle, Gauthier-Villars, Paris, 1952 (reprint of 1919 edition).
  • H. Lebesgue, Sur les intégrales singulières, Ann. Fac. Sci. Univ. Toulouse, ser 3 vol 1, 1909, 25-117, reproduced in: Henri Lebesgue, Œuvres scientifiques, Vol. 3., pp. 259-351.
  • K.-G. Steffens, The history of approximation theory, Birkhäuser, Boston 2006.
  • A.V. Efimov, Modulus of continuity, Encyclopaedia of Mathematics, Springer, 2001. ISBN 1-4020-0609-8.

Voci correlate

  Portale Matematica: accedi alle voci di Wikipedia che trattano di matematica

Read other articles:

1926 film by Archie Mayo Money TalksDirected byArchie MayoWritten byJessie BurnsBernard VorhausBased onMoney Talks by Rupert HughesStarringClaire WindsorBert RoachOwen MooreNed SparksCinematographyWilliam H. DanielsEdited byBen LewisProductioncompanyMetro-Goldwyn-MayerDistributed byMetro-Goldwyn-MayerRelease date May 10, 1926 (1926-05-10) Running time70 minutesCountryUnited StatesLanguageSilent (English intertitles) Money Talks is a 1926 American silent comedy film directed by ...

 

Гітлерівський бекон Гітлерівський бекон (угор. Hitlerszalonna або Hitler-szalonna, букв. «гітлерівське сало») — щільний фруктовий джем на кшталт мармеладу[1], який постачали з Німеччини угорським солдатам під час Другої світової війни. Брикет готувався з фруктової сировини, зок...

 

رون بيرغستروم   معلومات شخصية الميلاد 5 سبتمبر 1891[1]  الوفاة 7 مايو 1964 (72 سنة)   ستوكهولم  مركز اللعب مهاجم  الجنسية السويد  المسيرة الاحترافية  سنواتفريقمبارياتأهداف1915–1923 أيك سولنا -المنتخب الوطني  1913–1922 السويد 26 (5) [تعديل القيم في ويكي بيانات] ال

راؤول ثاني هدافي المنتخب الإسباني عبر التاريخ. راؤول هو لاعب كرة قدم محترف إسباني سابق شارك في 102 مباراة مع منتخب إسبانيا بين عامي 1996–2006. وهو ثاني هدافي المنتخب الإسباني عبر التاريخ خلف دافيد فيا. سجل 44 هدفاً من 102 مباراة، وفيما يلي قائمة بجميع الأهداف الدولية التي سجلها. قا...

 

Przemysł spożywczy Przemysł spożywczy – dział gospodarki, który zajmuje się wytwarzaniem produktów i półproduktów przeznaczonych do spożycia, takich jak: mięsne, mleczne, czyli nabiałowe, pieczywo, cukiernicze, napoje alkoholowe i bezalkoholowe itp. W skład tego przemysłu wchodzą: rzeźnie, zakłady przetwórstwa rybnego i mięsnego, mleczarnie, piekarnie, cukrownie, gorzelnie, browary, młyny, wytwórnie soków i przetwórstwo warzywniczo-owocowe, zakłady cukiernicze oraz...

 

 Nota: Para o imperador bizantino de mesmo nome, veja Constantino IV. Constantino IV de Constantinopla Nascimento século XI Morte maio de 1157 Ocupação Patriarca Ecumênico de Constantinopla Religião cristianismo ortodoxo [edite no Wikidata] Constantino V de Constantinopla (em grego: Κωνσταντῖνος Δ´ Χλιαρηνός), dito Cliarino, foi o patriarca grego ortodoxo de Constantinopla entre 1153 e 1156.[1]. Ver também Constantino IV de Constantinopla(1154-1156) Prec...

Apparalang Lokasi di Indonesia Informasi Lokasi Desa Ara, Kecamatan Bontobahari Kabupaten Bulukumba, Sulawesi Selatan Negara  Indonesia Koordinat 5°31′16″S 120°25′48″E / 5.521°S 120.43°E / -5.521; 120.43Koordinat: 5°31′16″S 120°25′48″E / 5.521°S 120.43°E / -5.521; 120.43 Awal pembangunan Kalo gak salah 2016 Jenis objek wisata objek wisata Bahari Apparalang adalah objek wisata bahari yang berlokasi di Desa Ara, Kecama...

 

Byzantine aristocrat George Palaiologos Doukas Komnenossebastos megas hetaireiarchesSeal of George Palaiologos, featuring Saint George on the obverse[1][2]Native nameΓεώργιος Παλαιολόγος Δούκας ΚομνηνόςBornc. 1125Died1167 or 1168Noble familyPalaiologosIssueAlexios PalaiologosFatherAlexios PalaiologosMother(Anna?) KomneneOccupationDiplomat George Palaiologos Doukas Komnenos (Greek: Γεώργιος Παλαιολόγος Δούκας Κο...

 

1940 Indian filmChandikaDirected byR. S. PrakashWritten byMuttaneni Venkata Chennakesavulu (story) Kopparapu Subba Rao (Dialogues )Produced byMirjapuram MaharajaStarringP. KannambaVemuri GaggaiahBellary RaghavaCinematographyKamal GhoshMusic byKopparapu Subba RaoRelease date 12 April 1940 (1940-04-12) Running time184 minutesCountryIndiaLanguageTelugu Chandika (Telugu: చండిక) is a 1940 Telugu film directed by R. S. Prakash. Veteran actress P. Kannamba portrayed the role...

2022 soundtrack album by Ludwig Göransson Turning Red (Original Motion Picture Soundtrack)Soundtrack album by Ludwig GöranssonReleasedMarch 11, 2022Recorded2021–2022StudioNewman Scoring StageElbo StudiosWarner Bros. Eastwood Scoring StageLos Angeles Philharmonic OrchestraGenreElectronicpopjazzLength76:55LabelWalt DisneyPixar soundtrack chronology Luca(2021) Turning Red (Original Motion Picture Soundtrack)(2022) Lightyear(2022) Ludwig Göransson chronology Bad Trip(2021) Turning Red(20...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Luís de Meneses, 3rd Count of Ericeira – news · newspapers · books · scholar · JSTOR (January 2023) (Learn how and when to remove this template message) His LordshipThe Count of EriceiraComptroller of the Exchequerof the Kingdom of PortugalIn office16 October ...

 

2012 American television mini-series On Death RowOn Death Row title cardGenreTelevision documentaryCreated byWerner HerzogDirected byWerner HerzogStarringWerner HerzogTheme music composerMark Degli AntoniCountry of origin United States United Kingdom Austria Original languageEnglishNo. of episodes8ProductionExecutive producers Dave Harding Henry S. Schleiff Sara Kozak Andre Singer Lucki Stipetic Nick Raslan[1] ProducerErik NelsonCinematographyPeter ZeitlingerRunning time49 minutes[...

У этого термина существуют и другие значения, см. Хитати. Hitachi, Ltd. 株式会社日立製作所 Штаб-квартира компании в Маруноути, Тиёда, Токио. Тип Публичная компания Листинг на бирже NYSE: HIT, TYO: 6501, OSX: 6501, NSE: 65010 Основание 1910; 113 лет назад (1910) Основатели Намихей Одайра Расположе...

 

高田明美Akemi Takada2009年日本博覽會(法國巴黎)人物設計師、插畫家、珠寶設計師羅馬拼音Takada Akemi性別女性國籍 日本出生高田 明美(たかだ あけみ) (1955-03-31) 1955年3月31日(68歲) 日本東京都官方網站高田明美オフィシャルホームページ ~ Angels ~ (日語)學歷多摩美術大學(平面設計系(日语:グラフィックデザイン学科))畢業代表作《福星小子 (1981年版)...

 

2017 video game 2017 video gameOutlast 2Developer(s)Red BarrelsPublisher(s)Red BarrelsDesigner(s)David ChateauneufPierre-Luc FoisyPhilippe MorinProgrammer(s)Réjean CharpentierMathieu GauthierFrançois VaillancourtArtist(s)Patrice CôtéHugo DallairePatrick DubucAlexandre SabourinWriter(s)J. T. PettyComposer(s)Samuel LaflammeEngineUnreal Engine 3[1]Platform(s)Microsoft WindowsPlayStation 4Xbox OneNintendo SwitchRelease April 25, 2017 Microsoft Windows, PlayStation 4, Xbox OneApril 25,...

  لمعانٍ أخرى، طالع الحدب (توضيح). قرية الحدب  - قرية -  تقسيم إداري البلد  اليمن المحافظة محافظة حجة المديرية مديرية قفل شمر العزلة عزلة الدانعي السكان التعداد السكاني 2004 السكان 481   • الذكور 253   • الإناث 228   • عدد الأسر 63   • عدد المساكن 64 معلومات ...

 

Gare de GisorsGeneral informationLocationPlace de la Gare 27140 GisorsFranceOwned bySNCFOperated bySNCFOther informationStation code87381244HistoryOpenedOctober 4, 1868 Gisors (formerly: Gisors-Embranchement) is a railway station serving the town Gisors, Eure department, northwestern France. It is situated on the now partially disbanded Saint-Denis–Dieppe railway. The station is serviced by both TER Normandie and Trasilien line J trains. External links Gisors station at Gares & Connexio...

 

Type of motorcycle Ducati 1198ManufacturerDucatiProduction2009–2011PredecessorDucati 1098SuccessorDucati 1199ClassSport bikeEngine1,198 cc (73.1 cu in), 90° L-twin, liquid-cooled desmodromic 4-valveBore / stroke106.0 mm × 67.9 mm (4.17 in × 2.67 in)Transmission6-speed constant-mesh sequential manual, dry multi-plate clutchRelatedDucati 848 The Ducati 1198 is a sport bike made by Ducati from 2009 to 2011. For the 2011 model year there were two ...

This article is about the Andaman Islands tribe. For the Cora people of Mexico, see Cora people. For the Kora people of South Africa, see Griqua people. Territory of the Kora (Aka-Kora) and other Andamanese peoples in the late 19th century. The Kora, Khora or Cora were one of the ten indigenous tribes of the Great Andamanese people, originally living on the eastern part of North Andaman Island in the Indian Ocean. The tribe is now extinct, although some of the remaining Great Andamanese on St...

 

Fictional character from Doctor Who The DoctorThe Fugitive DoctorDoctor Who characterJo Martin as the Fugitive DoctorFirst appearanceFugitive of the Judoon (2020)Last appearanceThe Power of the Doctor (2022)Introduced byChris ChibnallPortrayed byJo MartinInformationAppearances4 stories (4 episodes)Companions Lee Clayton[1][2][3] Karvanista[4] The Fugitive Doctor[a] is an incarnation of the Doctor,[5][6][7][8] the protagon...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!