ETV6 (i.e. translocation-Ets-leukemia virus) protein is a transcription factor that in humans is encoded by the ETV6 (previously known as TEL) gene. The ETV6 protein regulates the development and growth of diverse cell types, particularly those of hematological tissues. However, its gene, ETV6 frequently suffers various mutations that lead to an array of potentially lethal cancers, i.e., ETV6 is a clinically significant proto-oncogene in that it can fuse with other genes to drive the development and/or progression of certain cancers. However, ETV6 is also an anti-oncogene or tumor suppressor gene in that mutations in it that encode for a truncated and therefore inactive protein are also associated with certain types of cancers.
Gene
The human ETV6 gene is located at position "13.2" on the short (i.e. "p") arm of chromosome 12, i.e. its notated position is 12p13.2. The gene has 8 exons and two start codons, one located at exon 1 at the start of the gene and an alternative located upstream of exon 3. ETV6 codes for a full length protein consisting of 452 amino acids; the gene is expressed in virtually all cell types and tissues.[5][6] Mice depleted of the ETV6 gene by Gene knockout die between day 10.5 and 11.5 of embryonic life with defective yolk sacangiogenesis and extensive losses in mesenchymal and neural cells due to apoptosis. Other genetic manipulation studies in mice indicate that the gene is required for the development and maintenance of bone marrow-based blood cell formation and the vascular network.[5][7]
Protein
The human ETV6 protein is a member of the ETS transcription factor family; however, it more often acts to inhibit than stimulate transcription of its target genes. ETV6 protein contains 3 domains: a) the pointed N-terminal (i.e. PNT) domain which forms oligomer partners with itself as well as other transcription factors (e.g. FLI1) and is required for ETV6's transcriptional repressing activity; b) the central regulatory domain; and c) the C-terminal DNA-binding domain, ETS, which binds to the consensus DNA sequence, 5-GGAA/T-3 within a 9-to-10 bp sequence, in the target genes it regulates.[5][8] ETV6 interacts with other proteins that regulate the differentiation and growth of cells. It binds to and thereby inhibits FLI1, another member of the ETS transcription factor family, which is active in promoting the maturation of blood platelet-forming megakaryocytes and blocking the Cellular differentiation of erythroblasts into red blood cells; this results in the excessive proliferation and abnormal morphology of erythroblasts.[9][7] ETV6 likewise binds to HTATIP, a histone acetyl transferase that regulates the expression of various genes involved in gene transcription, DNA repair, and cellular apoptosis; this binding promotes the transcription-repressing activity of ETV6.[10]
Two unrelated kindreds were found to have autosomal dominant inherited mutations in the ETV6 gene, one family with a germline DNA substitution termed L349P that lead to replacing leucine with proline at amino acid 349 in the DNA binding domain of the ETV6, the second, termed N385fs, in germline DNA caused the lose of five base pairs ETV6 and a truncated ETV6 protein. Both mutant proteins failed to enter cell nuclei normally and had a reduced capacity to target genes regulated by the normal ETV6 protein. Afflicted members of these families had low platelet counts (i.e. thrombocytopenia) and acute lymphoblastic leukemia. Fifteen members of the two kindreds had thrombocytopenia, five of whom also had acute lymphoblastic leukemia. The L249P kindred also had one family member with renal cell carcinoma and another family member with Duodenal cancer. The relationship of these two cancers to the L249P mutation has not been investigated. In all events these two familial thrombocytopenia syndromes appear distinctly different than the thrombocytopenia 5 syndrome.[13]
Treatment
Family members with thrombocytopenia 5 need to be regularly monitored with complete blood count and blood smear screenings to detect the early changes brought on by the malignant transformations of this disease into hematological neoplasms. Patients who developed these transformations have generally been treated similarly to patients who have the same hematological neoplasms but on a non-familial basis. Patients developing non-malignant hematological or non-hematological solid tumor manifestations of thrombocytopenia 5 are also treated like to patients with the same but no-familial disease.[11][12]
The acute lymphoblastic leukemia associated with L349P or N385fs mutations in ETV6 appeared far less sensitive to standard chemotherapy for acute lymphoblastic leukemia with 2 among 3 family members moving rather quickly from chemotherapy to bone marrow transplantation and the third family member expiring. This suggest that these mutation-related forms of acute lymphoblastic leukemia require aggressive therapy.[13]
Acquired mutations
The ETV6 gene is prone to develop a wide range of acquired mutations in hematological precursor cells that lead to various types of leukemia and/or lymphoma. It may also suffer a smaller number of mutations in non-hematological tissues that leads to solid tumors. These mutations involve chromosome translocations which fuse the ETV6 on chromosome 12's the short (i.e. "p") arm ("q" stands for long arm) at position p13.2 (site notation: 12p12.2) near to a second gene on another chromosome or, more rarely, its own chromosome. This creates a fusion gene of the oncogene category which encodes a chimeric protein that promotes the malignant growth of its parent cells. It may be unclear which portion of the newly formed oncoprotein contributes to the ensuing malignancy but fusions between ETV6 and proteins with tyrosine kinase activity generally are converted from a protein with tightly regulated tyrosine kinase activity to an uncontrolled and continuously active tyrosine kinase that thereby promotes the malignant transformation of its parent cells.[14]
Hematological malignancies
The following table lists the more frequently occurring genes to which ETV6 fuses, the function of these genes, these genes' chromosomal locations, the notation designating the most common sites of the translocations of these fused genes, and the malignancies resulting from these translocations. These translocation mutations commonly occur in pluripotenthematopoietic stem cells that differentiate into various types of mature hematological cells. Consequently, a given mutation may lead to various types of hematological malignancies.[5][14] The table includes abbreviations for tyrosine kinase receptor (TK receptor), non-receptor tyrosine kinase (non-receptor TK), homeobox protein type of transcription factor (homeobox protein), acute lymphocytic leukemia (ALL), Philadelphia chromosome negative chronic myelogenous leukemia (Ph(-)CML), myelodysplastic syndrome (MDS), myeloproliferative neoplasm (MPN), and acute myeloid leukemia (AML). The presence of ETV6 gene mutations in myelodysplastic syndromes is associated with shortened survival.[15]
In addition to the fusion gene-producing translocations given in the table, ETV6 has been reported to fuse with other genes in very rare cases (i.e. 1-10 published reports). These translocations lead to one or more of the same types of hematological malignancies listed in the table. Thus, the ETV6 gene reportedly forms translocation-induced fusion genes with:[5]a) tyrosine kinase receptor gene FGFR3; b) non-receptor tyrosine kinase genes ABL2, NTRK3, JAK2, SYK, FRK, and LYN; c) transcription factor genes MN1 and PER1; d) homeobox protein transcription factor CDX2; e) Protein tyrosine phosphatase receptor-type R gene PTPRR;[16]f) transcriptional coactivator for nuclear hormone receptors gene NCOA2; f)Immunoglobulin heavy chain gene IGH;[17]g) enzyme genes TTL (adds and removes tyrosine residues on α-tubulin),[18]GOT1 (an Aspartate transaminase), and ACSL6 (a Long-chain-fatty-acid—CoA ligase); h) transporter gene ARNT (binds to ligand-bound aryl hydrocarbon receptor to aid in its movement to the nucleus where it promotes the expression of genes involved in xenobiotic metabolism); i) unknown function genes CHIC2,[19]MDS2,[20]FCHO2[21] and BAZ2A.;[22] and j) non-annotated gene STL (which has no long open reading frame[23]).
At least 9 frameshift mutations in the'ETV6 gene have been associated with ~12% of adult T cell Acute lymphoblastic leukemia cases. These mutations involve insertions or deletions in the gene that lead to its encoding a truncated and therefore inactive ETV6 protein. These mutations commonly occur alongside mutations in another oncogene, NOTCH1, which is associated with T cell acute lymphoblastic lymphoma quite independently of ETV6. It is suggested that suppressor mutations in the ETV6 gene may be a contributing factor in the development ant/or progression of this leukemia type.[8][24][25]
Treatment
Patients developing hematological malignancies secondary to the ETV6 gene fusion to receptor tyrosine kinases and non-receptor tyrosine kinases may be sensitive to therapy with tyrosine kinase inhibitors.[26] For example, patients with clonal eosinophilias due to PDGFRA or PDGFRB fusion genes experience long-term, complete remission when treated with are highly sensitive tyrosine kinase inhibitor, gleevec.[14]Larotrectinib, entrectinib, merestinib, and server other broadly acting tyrosine kinase inhibitors target the NTRK3 gene. Many of these drugs are in phase 1 or phase 2 clinical trials for the treatment of ETV6-NTRK3-related solid tumors and may ultimately prove useful for treating hematologic malignancies associated with this fusion gene.[27] Clinical trials have found that the first generation tyrosine kinase inhibitors sorafenib, sunitinib, midostaurin, lestaurtinib have shown some promise in treating acute myelogenous leukemia associated with the FLT3-TKI fusion gene; the second generation tyrosine kinase inhibitors quizartinib and crenolanib which are highly selective in inhibiting the FLT3 protein, have shown significant promise in treating relapsed and refractory acute myelogenous leukemia related to the FLT3-TKI fusion gene.[28] One patient with ETV6-FLT3-related myeloid/lymphoid neoplasm obtained a short term remission on sunitinib and following relapse, on sorafenib suggesting that the cited FLT3 protein tyrosine kinase inhibitors may prove useful for treating ETV6-FLT-related hematologic malignancies.[29] Two patients suffering hematologic malignancies related to PCM1-JAK2 or BCR-JAK2 fusion genes experienced complete and cytogenetic remissions in response to the tyrosine kinase inhibitor ruxolitinib; while both remissions were short-term (12 months), these results suggest that tyrosine kinase inhibitors that target JAK2 may be of some use for treating hematologic malignancies associated with ETV6-JAK2 fusion stems.[14] An inhibitor of SYK tyrosine kinase, TAK-659 is currently undergoing Phase I clinical trials for advanced lymphoma malignancies and may prove to be useful in treating this disease when associated with the ETV6-SYK fusion gene.[30] It is possible that hematological malignancies associated with ETV6 gene fusions to either the SYK or FRK tyrosine kinase genes may someday be shown susceptible to tyrosine kinase inhibitor therapy. However, children with ETV6-RUNX1-associated acute lymphoblastic leukemia are in an especially good-risk subgroup and therefore have been almost uniformly treated with standard-risk chemotherapy protocols.[31]
Hematological malignancies associated with ETY6 gene fusions to other transcription factor genes appear to reflect a loss or gain in function of ETV6 and/or the other genes in regulating expression of their target genes; this results in the formation or lack of formation of products which influence cell growth, proliferation, and/or survival. In vitro studies of ETV6-RUNX, ETV6-MN1, ETV6-PER1, and ETV6-MECOM fusion genes support this notion. Thus, the ETV6-MECOM fusion gene is overexpressed because it is driven by the promoter derived from ETV6[5] whereas the ETV6-RUNX, ETV6-MN1, and ETV6-PER1 fusion genes produce chimeric proteins which lack ETV6 protein's gene-suppressing activity.[32] The chimeric protein products of ETV6 gene fusions with ARNT, TTL, BA22A, FCHO2, MDS2, and CHIC2 likewise lack ETV6 protein's transcription factor activity.[32] Gene fusions between ETV6 and the homeobox gens (i.e. CDX2, PAX5, and MNX1) produce chimeric proteins with lack either ETV6s and/or CDX2s, PAX5s or MNX1s transcription factor activity.[5] In all events, hematological malignancies associated with these fusion genes have been treated with standard chemotherapy protocols selected on the basis of the malignancies phenotype.
The treatment of ETV6 gene-associated solid tumors has not advanced as far as that for ETV6 gene-associated hematological malignancies. It is proposed that tyrosine kinase inhibitors with specificity for NTRK3's tyrosine kinase activity in ETV6-NTRK3 gene-associated solid tumors may be of therapeutic usefulness. Entrectinib, a pan-NTRK as well as an ALK and ROS1 tyrosine kinase inhibitor has been found useful in treating a single patient with ETV6-NRTK3 fusion gene-associated mammary analogue secretory carcinoma and lends support to the clinical development of NTRK3-directed tyrosine kinase inhibitors to treat ETV6-NTRK3 fusion protein associated malignancies.[27] Three clinical trials are in the recruitment phase for determining the efficacy of treating a wide range of solid tumors associated with mutated, overactive tyrosine kinase proteins, including the ETV6-TRK3 protein, with larotrectinib, a non-selective inhibitor of NTRK1, NTRK2, and NTRK3 tyrosine kinases.[38]
^"Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
^"Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
^ abcdefgDe Braekeleer E, Douet-Guilbert N, Morel F, Le Bris MJ, Basinko A, De Braekeleer M (August 2012). "ETV6 fusion genes in hematological malignancies: a review". Leukemia Research. 36 (8): 945–61. doi:10.1016/j.leukres.2012.04.010. PMID22578774.
^Majewska H, Skálová A, Stodulski D, Klimková A, Steiner P, Stankiewicz C, Biernat W. "Mammary analogue secretory carcinoma of salivary glands: a new entity associated with ETV6 gene rearrangement." Virchows Arch. 2015 Mar;466(3):245-54. doi: 10.1007/s00428-014-1701-8. Epub 2014 Dec 12.
^Alassiri AH, Ali RH, Shen Y, Lum A, Strahlendorf C, Deyell R, Rassekh R, Sorensen PH, Laskin J, Marra M, Yip S, Lee CH, Ng TL (August 2016). "ETV6-NTRK3 Is Expressed in a Subset of ALK-Negative Inflammatory Myofibroblastic Tumors". The American Journal of Surgical Pathology. 40 (8): 1051–61. doi:10.1097/PAS.0000000000000677. PMID27259007. S2CID25165398.
Keung YK, Beaty M, Steward W, Jackle B, Pettnati M (October 2002). "Chronic myelocytic leukemia with eosinophilia, t(9;12)(q34;p13), and ETV6-ABL gene rearrangement: case report and review of the literature". Cancer Genetics and Cytogenetics. 138 (2): 139–42. doi:10.1016/S0165-4608(02)00609-X. PMID12505259.
Fainstein E, Einat M, Gokkel E, Marcelle C, Croce CM, Gale RP, Canaani E (December 1989). "Nucleotide sequence analysis of human abl and bcr-abl cDNAs". Oncogene. 4 (12): 1477–81. PMID2687768.
Buijs A, Sherr S, van Baal S, van Bezouw S, van der Plas D, Geurts van Kessel A, Riegman P, Lekanne Deprez R, Zwarthoff E, Hagemeijer A (April 1995). "Translocation (12;22) (p13;q11) in myeloproliferative disorders results in fusion of the ETS-like TEL gene on 12p13 to the MN1 gene on 22q11". Oncogene. 10 (8): 1511–9. PMID7731705.
Papadopoulos P, Ridge SA, Boucher CA, Stocking C, Wiedemann LM (January 1995). "The novel activation of ABL by fusion to an ets-related gene, TEL". Cancer Research. 55 (1): 34–8. PMID7805037.
Golub TR, Barker GF, Lovett M, Gilliland DG (April 1994). "Fusion of PDGF receptor beta to a novel ets-like gene, tel, in chronic myelomonocytic leukemia with t(5;12) chromosomal translocation". Cell. 77 (2): 307–16. doi:10.1016/0092-8674(94)90322-0. PMID8168137. S2CID30073372.
Wlodarska I, Baens M, Peeters P, Aerssens J, Mecucci C, Brock P, Marynen P, Van den Berghe H (June 1996). "Biallelic alterations of both ETV6 and CDKN1B genes in a t(12;21) childhood acute lymphoblastic leukemia case". Cancer Research. 56 (11): 2655–61. PMID8653712.
Hillier LD, Lennon G, Becker M, Bonaldo MF, Chiapelli B, Chissoe S, Dietrich N, DuBuque T, Favello A, Gish W, Hawkins M, Hultman M, Kucaba T, Lacy M, Le M, Le N, Mardis E, Moore B, Morris M, Parsons J, Prange C, Rifkin L, Rohlfing T, Schellenberg K, Bento Soares M, Tan F, Thierry-Meg J, Trevaskis E, Underwood K, Wohldman P, Waterston R, Wilson R, Marra M (September 1996). "Generation and analysis of 280,000 human expressed sequence tags". Genome Research. 6 (9): 807–28. doi:10.1101/gr.6.9.807. PMID8889549.
Andreasson P, Johansson B, Arheden K, Billström R, Mitelman F, Höglund M (June 1997). "Deletions of CDKN1B and ETV6 in acute myeloid leukemia and myelodysplastic syndromes without cytogenetic evidence of 12p abnormalities". Genes, Chromosomes & Cancer. 19 (2): 77–83. doi:10.1002/(SICI)1098-2264(199706)19:2<77::AID-GCC2>3.0.CO;2-X. PMID9171997. S2CID27083284.
Lacronique V, Boureux A, Valle VD, Poirel H, Quang CT, Mauchauffé M, Berthou C, Lessard M, Berger R, Ghysdael J, Bernard OA (November 1997). "A TEL-JAK2 fusion protein with constitutive kinase activity in human leukemia". Science. 278 (5341): 1309–12. Bibcode:1997Sci...278.1309L. doi:10.1126/science.278.5341.1309. PMID9360930.
Knezevich SR, McFadden DE, Tao W, Lim JF, Sorensen PH (February 1998). "A novel ETV6-NTRK3 gene fusion in congenital fibrosarcoma". Nature Genetics. 18 (2): 184–7. doi:10.1038/ng0298-184. PMID9462753. S2CID7390311.
Cools J, Bilhou-Nabera C, Wlodarska I, Cabrol C, Talmant P, Bernard P, Hagemeijer A, Marynen P (September 1999). "Fusion of a novel gene, BTL, to ETV6 in acute myeloid leukemias with a t(4;12)(q11-q12;p13)". Blood. 94 (5): 1820–4. doi:10.1182/blood.V94.5.1820. PMID10477709.
Островська Людмила КонстянтинівнаНародилася 30 серпня (12 вересня) 1913 (110 років)Київ, Російська імперіяКраїна Російська імперія СРСР УкраїнаДіяльність біологAlma mater КНУ імені Тараса ШевченкаГалузь біохіміяЗаклад ІФРГНауковий ступінь доктор біологічних наукНаго...
Metro HanoiInfoWilayahHanoi, VietnamJenisAngkutan cepatJumlah jalur1 (beroperasi)1 (dalam pembangunan)Jumlah stasiun12 (beroperasi)12 (dalam pembangunan)Penumpang harian12.000 (2018)Situs webhanoimetro.net.vn/enOperasiDimulai6 November 2021OperatorPerusahaan Metro Hanoi dan Metro TokyoJumlah gerbong13TeknisPanjang sistem13,1 km (beroperasi)12 km (dalam pembangunan)Lebar sepur1.435 mm (4 ft 8+1⁄2 in)(sepur standar)ListrikRel ketiga 750 V DCKecepatan tertinggi80 k...
Ferrocarril Vasco-Navarro La antigua Estación de Maestu, en Álava, correspondiente al tramo Vitoria-Estella. El edificio es hoy la sede del Ayuntamiento del municipio de Arraya-Maestu.LugarUbicación España EspañaDescripciónTipo Ferrocarril de vía estrechaInauguración 27 de febrero de 1889Clausura 31 de diciembre de 1967Inicio Estación de EstellaFin Estación de MecoaldeCaracterísticas técnicasLongitud 143 kmAncho de vía 1000 mmExplotaciónEstado En desuso[editar datos en...
5ª Divisão de Infantaria País Império do Japão Corporação Exército imperial japonês Missão Infantaria Unidade Divisão Criação 14 de maio de 1888 Extinção setembro de 1945 História Guerras/batalhas Segunda Guerra Mundial A 5ª Divisão foi uma divisão de infantaria do Império do Japão que serviu durante a Segunda Guerra Mundial. A divisão foi formada 14 de maio de 1888 em Kumamoto, sendo desmobilizada no mês de setembro de 1945 com fim da guerra.[1] Comandantes...
Mexican singer-songwriter In this Spanish name, the first or paternal surname is Lafourcade and the second or maternal family name is Silva. Natalia LafourcadeBornMaría Natalia Lafourcade Silva (1984-02-26) 26 February 1984 (age 39)Mexico City, MexicoOccupationsSingersongwritermusicianrecord producerYears active1998–presentParentGastón Lafourcade (father)RelativesEnrique Lafourcade (uncle)Musical careerOriginCoatepec, Veracruz, Mexico[1]GenresPop rocklatin rockfo...
High-volume digital storage hardware This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: PetaBox – news · newspapers · books · scholar · JSTOR (December 2012) (Learn how and when to remove this template message) Internet Archive Petabox PetaBox, also stylized Petabox, is a storage unit from Capricorn Technologie...
Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Nusa Lembongan – berita · surat kabar · buku · cendekiawan · JSTOR Koordinat: 8°40.906′S 115°27.067′E / 8.681767°S 115.451117°E / -8.681767; 115.451117 Nusa Lembongan Peta...
2008 American filmThe UninvitedFilm posterDirected byBob BadwayWritten byBob BadwayProduced byMichael EmanuelJasper JanJim StoddardStarringMarguerite MoreauBrittany CurranColin HayCinematographyIgor MeglicEdited byJoaquin MontalvanMusic byKen MazurProductioncompanyCanal Street FilmsRelease date 2008 (2008) Running time97 minutesCountryUnited StatesLanguageEnglish The Uninvited is a 2008 American horror thriller film directed and written by Bob Badway and produced by Michael Emanuel, Jasp...
2007 Philippine television series Sinasamba KitaTitle cardAlso known asAll for YouGenreDramaCreated byGilda OlvidadoBased onSinasamba Kita (1982)by Eddie GarciaWritten by Don Michael Perez Anna Aleta A. Nadela Directed byJoel LamanganCreative directorRoy IglesiasStarring Sheryl Cruz Wendell Ramos Valerie Concepcion Carlo Aquino Theme music composer George Canseco Rey Valera Opening themeSheryl CruzEnding themeSinasamba Kita by Ogie AlcasidCountry of originPhilippinesOriginal languageTagalogNo...
هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (نوفمبر 2023) هذه مقالة غير مراجعة. ينبغي أن يزال هذا القالب بعد أن يراجعها محرر مغاير للذي أنشأها؛ إذا لزم الأمر فيجب أن توسم المقالة بقوالب الصيانة المناسبة. يمكن أيضاً ...
Novel by Taylor Caldwell This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Dynasty of Death – news · newspapers · books · scholar · JSTOR (August 2...
Solar potentialThis article needs to be updated. Please help update this article to reflect recent events or newly available information. (March 2022) Solar power in Saudi Arabia has become more important to the country as oil prices have risen. In 2021, 60.89% of energy consumed was produced by burning oil.[1] The Saudi agency in charge of developing the nations renewable energy sector, Ka-care, announced in May 2012 that the nation would install 41 gigawatts (GW) of solar capacity b...
British cycling team This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: AT85 Pro Cycling – news · newspapers · books · scholar · JSTOR (January 2020) (Learn h...
Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Sandinista – berita · surat kabar · buku · cendekiawan · JSTOR Front Pembebasan Nasional Sandinista Frente Sandinista de Liberaciòn NacionalSingkatanFSLNPresidenDaniel OrtegaWakil PresidenRosario Murill...
Artikel ini membutuhkan penyuntingan lebih lanjut mengenai tata bahasa, gaya penulisan, hubungan antarparagraf, nada penulisan, atau ejaan. Anda dapat membantu untuk menyuntingnya.H.Andi Syafril Chaidir SyamS.I.P., M.H.ᨕᨉᨗ ᨔᨄᨛᨑᨗᨒᨗ ᨖᨕᨗᨉᨗᨑᨗ ᨔᨛᨐᨆBupati Maros ke-13PetahanaMulai menjabat 26 Februari 2021PresidenJoko WidodoGubernurNurdin AbdullahAndi Sudirman SulaimanBahtiar Baharuddin (Pj.)WakilHj. Suhartina Bohari, S.E.PendahuluAndi Davied Syamsud...
Italian drink made with coffee and cocoa A marocchino Marocchino (caffè marocchino) is a coffee drink created in Alessandria, Italy.[1][2] Preparation Generally, the glass cup is first dusted with cocoa powder, then topped with milk froth and espresso, with a second dusting of cocoa on top. Serving style It is served in a small glass and consists of a shot of espresso (sometimes a small shot, or ristretto), cocoa powder and milk froth. In some regions of northern Italy, thick...
This article is about the coastal tower in Żurrieq. For the inland tower in Żurrieq, see Bubaqra Tower. Wardija TowerTorri tal-WardijaPart of the De Redin towersŻurrieq, Malta Wardija Tower prior to restoration, viewed from the northCoordinates35°49′9.5″N 14°28′23.2″E / 35.819306°N 14.473111°E / 35.819306; 14.473111TypeCoastal watchtowerSite informationOwnerGovernment of MaltaControlled byPrivate tenantOpen tothe publicNoConditionIntactSit...