Contorsion tensor

The contorsion tensor in differential geometry is the difference between a connection with and without torsion in it. It commonly appears in the study of spin connections. Thus, for example, a vielbein together with a spin connection, when subject to the condition of vanishing torsion, gives a description of Einstein gravity. For supersymmetry, the same constraint, of vanishing torsion, gives (the field equations of) eleven-dimensional supergravity.[1] That is, the contorsion tensor, along with the connection, becomes one of the dynamical objects of the theory, demoting the metric to a secondary, derived role.

The elimination of torsion in a connection is referred to as the absorption of torsion, and is one of the steps of Cartan's equivalence method for establishing the equivalence of geometric structures.

Definition in metric geometry

In metric geometry, the contorsion tensor expresses the difference between a metric-compatible affine connection with Christoffel symbol and the unique torsion-free Levi-Civita connection for the same metric.

The contorsion tensor is defined in terms of the torsion tensor as (up to a sign, see below)

where the indices are being raised and lowered with respect to the metric:

.

The reason for the non-obvious sum in the definition of the contorsion tensor is due to the sum-sum difference that enforces metric compatibility. The contorsion tensor is antisymmetric in the first two indices, whilst the torsion tensor itself is antisymmetric in its last two indices; this is shown below.

The full metric compatible affine connection can be written as:

where the torsion-free Levi-Civita connection:

Definition in affine geometry

In affine geometry, one does not have a metric nor a metric connection, and so one is not free to raise and lower indices on demand. One can still achieve a similar effect by making use of the solder form, allowing the bundle to be related to what is happening on its base space. This is an explicitly geometric viewpoint, with tensors now being geometric objects in the vertical and horizontal bundles of a fiber bundle, instead of being indexed algebraic objects defined only on the base space. In this case, one may construct a contorsion tensor, living as a one-form on the tangent bundle.

Recall that the torsion of a connection can be expressed as

where is the solder form (tautological one-form). The subscript serves only as a reminder that this torsion tensor was obtained from the connection.

By analogy to the lowering of the index on torsion tensor on the section above, one can perform a similar operation with the solder form, and construct a tensor

Here is the scalar product. This tensor can be expressed as[2]

The quantity is the contorsion form and is exactly what is needed to add to an arbitrary connection to get the torsion-free Levi-Civita connection. That is, given an Ehresmann connection , there is another connection that is torsion-free.

The vanishing of the torsion is then equivalent to having

or

This can be viewed as a field equation relating the dynamics of the connection to that of the contorsion tensor.

Derivation

One way to quickly derive a metric compatible affine connection is to repeat the sum-sum difference idea used in the derivation of the Levi–Civita connection but not take torsion to be zero. Below is a derivation.

Convention for derivation (Choose to define connection coefficients this way. The motivation is that of connection-one forms in gauge theory):

We begin with the Metric Compatible condition:

Now we use sum-sum difference (Cycle the indices on the condition):

We now use the below torsion tensor definition (for a holonomic frame) to rewrite the connection:

Note that this definition of torsion has the opposite sign as the usual definition when using the above convention for the lower index ordering of the connection coefficients, i.e. it has the opposite sign as the coordinate-free definition in the below section on geometry. Rectifying this inconsistency (which seems to be common in the literature) would result in a contorsion tensor with the opposite sign.

Substitute the torsion tensor definition into what we have:

Clean it up and combine like terms

The torsion terms combine to make an object that transforms tensorially. Since these terms combine together in a metric compatible fashion, they are given a name, the Contorsion tensor, which determines the skew-symmetric part of a metric compatible affine connection.

We will define it here with the motivation that it match the indices of the left hand side of the equation above.

Cleaning by using the anti-symmetry of the torsion tensor yields what we will define to be the contorsion tensor:

Subbing this back into our expression, we have:

Now isolate the connection coefficients, and group the torsion terms together:

Recall that the first term with the partial derivatives is the Levi-Civita connection expression used often by relativists.

Following suit, define the following to be the torsion-free Levi-Civita connection:

Then we have that the full metric compatible affine connection can now be written as:

Relationship to teleparallelism

In the theory of teleparallelism, one encounters a connection, the Weitzenböck connection, which is flat (vanishing Riemann curvature) but has a non-vanishing torsion. The flatness is exactly what allows parallel frame fields to be constructed. These notions can be extended to supermanifolds.[3]

See also

References

  1. ^ Urs Schreiber, "11d Gravity From Just the Torsion Constraint" (2016)
  2. ^ David Bleecker, "Gauge Theory and Variational Principles Archived 2021-07-09 at the Wayback Machine" (1982) D. Reidel Publishing (See theorem 6.2.5)
  3. ^ Bryce DeWitt, Supermanifolds, (1984) Cambridge University Press ISBN 0521 42377 5 (See the subsection "distant parallelism" of section 2.7.)

Read other articles:

Världsmästerskapen i skidskytte 1982Datum10-14 februari 1982VärdskapLand SovjetunionenPlatsMinsk,  Vitryska SSR← Lahtis 1981 Antholz 1983 → De 19:e Världsmästerskapen i skidskytte avgjordes i Minsk, Sovjetunionen mellan 10 februari och 14 februari 1982. Till och med 1983 anordnades världsmästerskap i skidskytte endast för herrar. Resultat  Sovjetunionen, Minsk - Världsmästerskapen i skidskytte 1982. 10 februari 1982 - Distans (20,0 kilometer) - Herrar Nr N...

 

J.A.K.Q. DengekitaiGenreTokusatsuPembuatShotaro IshinomoriPemeranYoshitaka TambaShichiro Gou (Diperankan sebagai Heizan Ito)Mitchi LoveYusuke KazatoHiroshi MiyauchiNaratorToru OhiraPenggubah lagu temaMichiaki WatanabeLagu pembukaJAKQ Dengekitai oleh Isao Sasaki dan Koorogi '73Lagu penutupItsuka, Hana wa Saku darou oleh Isao SasakiPenata musikMichiaki WatanabeNegara asal JepangJmlh. episode35ProduksiProduserTakafumi HaginoYoshiaki KoizumiSusumu YoshikawaDurasi30 menit per episodeRumah pr...

 

Malaysian badminton player In this Chinese name, the family name is Koo (古). Badminton playerKoo Kien Keat古健杰Koo Kien KeatPersonal informationCountryMalaysiaBorn (1985-09-18) 18 September 1985 (age 38)Ipoh, Perak, MalaysiaHeight1.79 m (5 ft 10 in)[1]Weight75 kg (165 lb; 11.8 st)[1]Years active2003–2016RetiredNovember 2016HandednessRight[1]Men's doublesHighest ranking1 (11 October 2007) Medal record Men's badminton Repre...

2019 Indian Hindi-language drama film by Banty Dubey This article is an orphan, as no other articles link to it. Please introduce links to this page from related articles; try the Find link tool for suggestions. (October 2019) Jacqueline I Am ComingFilm posterDirected byBanty DubeyWritten byPinku DubeyProduced byManjesh GiriStarringRaghubir YadavDiiva DhanoyaShakti KumarKiran PatilCinematographySaravanan ElavarasuEdited bySachin KunalMusic byVipin PatwaProductioncompanyMD ProductionDistribute...

 

Contoh subdomain Wikipedia Subdomain adalah bagian dari sebuah nama domain induk. Subdomain umumnya mengacu ke suatu alamat fisik di sebuah situs contohnya: wikipedia.org merupakan sebuah domain induk. Sedangkan id.wikipedia.org merupakan sebuah subdomain. Biasanya, subdomain ada di depan domain dan dipisah dengan titik, seperti id.wikipedia.org. id adalah subdomain wikipedia, sedangkan wikipedia itu sendiri adalah domain induk. Subdomain juga sebagai third-level domain. Referensi Pranala lua...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (يناير 2023) هذه مقالة غير مراجعة. ينبغي أن يزال هذا القالب بعد أن يراجعها محرر مغاير للذي أنشأها؛ إذا لزم الأمر فيجب أن توسم المقالة بقوالب الصيانة المناسبة. يمكن أيضاً تق

Baseball stadium in Fresno, California; home of the Fresno Grizzlies Chukchansi ParkFormer namesGrizzlies Stadium (2002–2006)Location1800 Tulare StreetFresno, CaliforniaUnited StatesCoordinates36°43′56″N 119°47′26″W / 36.7321°N 119.7905°W / 36.7321; -119.7905Public transit Fresno Fresno Area Express (FAX)OwnerCity of FresnoOperatorFresno Sports Management, LLC.[2]Executive suites33Capacity10,650Record attendance16,000+ (2012)Field sizeLef...

 

Book by Seabury Quinn The Phantom Fighter Dust-jacket illustration by Frank Utpatel for The Phantom-FighterAuthorSeabury QuinnCover artistFrank UtpatelCountryUnited StatesLanguageEnglishGenreSupernatural fiction, detective fictionPublisherMycroft & MoranPublication date1966Media typePrint (hardback)Pages263 pp The Phantom Fighter is a collection of Occult detective short stories by author Seabury Quinn. It was released in 1966 by Mycroft & Moran in an edition of 2,022 copies...

 

Maharaja of Mysore from 1673–1704 Chikka Devaraja14th Maharaja of MysoreReign1673–1704PredecessorDodda Kempadevaraja (paternal uncle)SuccessorKanthirava Narasaraja II (son)Born22 September 1645Died16 November 1704IssueKanthirava Narasaraja IINamesChikka Devaraja WodeyarHouseWodeyarFatherDodda Devaraja Devaraja Wodeyar II (22 September 1645 – 16 November 1704) was the fourteenth maharaja of the Kingdom of Mysore from 1673 to 1704.[1] During this time, Mysore saw further significa...

Persikubar PutraNama lengkapPersatuan Sepakbola Indonesia Kutai Barat PutraJulukanMacan DahanBerdiri2021; 23 bulan lalu (2021)StadionStadion Swalas GunaaqSendawar, Kutai Barat(Kapasitas: 15,000)PemilikHengki, SHPelatihVictor SimonLigaLiga 3 Kalimantan Barat Kostum kandang Kostum tandang Persikubar Putra (atau singkatan dari Persatuan Sepakbola Indonesia Kutai Barat Putra) adalah klub sepak bola Indonesia yang bermarkas di Stadion Swalas Gunaaq, Kabupaten Kutai Barat, Kalimantan Timur. Ti...

 

2011 studio album by Francisca ValenzuelaBuen SoldadoStudio album by Francisca ValenzuelaReleasedMarch 3, 2011 (Chile)RecordedAugust 2010 at Estudios Atómica in Santiago, Chile.[1]GenrePop, pop rock, jazz, folkLength47:04LabelFeria, Sony MusicProducerVicente Sanfuentes, Mocky, & Francisca ValenzuelaFrancisca Valenzuela chronology Muérdete La Lengua(2007) Buen Soldado(2011) Tajo Abierto(2014) Singles from Buen Soldado Quiero Verte MásReleased: January 1, 2011 Que SeríaR...

 

Voce principale: Isola dei musei. Questa voce o sezione sull'argomento musei della Germania non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Altes Museum UbicazioneStato Germania LocalitàBerlino IndirizzoBodestraße 1-3, Mitte Coordinate52°31′10″N 13°23′54″E / 52.519444°N 13.398333°E52.519444; 13.398333Coordinate: 52°31...

1962年西藏喜马拉雅山脉马泉河畔 马泉河(藏語:རྟ་མཆོག་གཙང་པོ/རྟ་མཆོག་ཁ་འབབ,威利转写:rta mchog gtsang po / rta mchog kha 'bab,汉语音译当却藏布、当却喀拨)是雅鲁藏布江上游、桑木张以下的河段,由杰马雍宗曲、库比藏布和马攸藏布汇聚而成。杰马雍宗曲是雅鲁藏布江的正源,发源于中、尼边境喜马拉雅山北麓的昂色洞冬冰川[1],其...

 

Japanese company Daiwa Securities Group Inc.Headquarters at GranTokyo in Marunouchi, Chiyoda, TokyoTypePublic (K.K)Traded asTYO: 8601TOPIX Large 70 ComponentIndustryInvestment bankingFounded1943 (1943)HeadquartersTokyo, JapanKey peopleHibino Takashi (President and CEO)ProductsFinancial services Investment banking Investment management Brokerage firmTotal assets$196.7 billion (2015)[1]Number of employees14,889 (at March 2022)SubsidiariesDC AdvisoryWebsitewww.daiwa-grp.jp/english/ ...

 

For the song by Peter Tosh, see Wanted Dread and Alive. Novel by Mario Puzo Fools Die First editionAuthorMario PuzoCountryUnited StatesLanguageEnglishGenreCrime novelPublisherG. P. Putnam's SonsPublication date9 October 1978Media typePrint (hardback & paperback) & AudiobookPages544 pp (Paperback edition)ISBN0-399-12244-3 (Hardcover edition) & ISBN 0-451-16019-3 (Paperback editions)OCLC3912796Dewey Decimal813/.5/4LC ClassPZ4.P994 Fn 1978 PS3566.U9Preceded byThe ...

Questa voce sull'argomento ciclisti spagnoli è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Ángel Madrazo Madrazo Rui in maglia Caja Rural al Le Samyn 2015 Nazionalità  Spagna Altezza 172 cm Peso 63 kg Ciclismo Specialità Strada Squadra Burgos-BH Carriera Squadre di club 2008 Saunier Duvalstagista2009-2010 Caisse d'Epargne2011-2013 Movistar2014-2016 Caja Rural2017-2018 Delko2019-Burgos-BH Statistiche aggiornate al ...

 

Diócesis de Trenton Dioecesis Trentonen(sis) (en latín) Escudo de la diócesis Catedral de Santa María de la AsunciónInformación generalIglesia católicaIglesia sui iuris latinaRito romanoSufragánea de arquidiócesis de NewarkFecha de erección 2 de agosto de 1881 (como diócesis)SedeCatedral de Santa María de la AsunciónCiudad TrentonDivisión administrativa estado de Nueva JerseyPaís  Estados UnidosConcatedral de San Roberto Bellarmino (en Freehold)Curia diocesana Chancery Off...

 

Baluster der Haupttreppe des Nationalmuseums in Prag (Kalkstein Adneter Rotscheck) Der Baluster (über franz. balustre von ital. balaustro von griech. βαλαύστιον / balaustion = „Granatapfelblüte“, wegen der glockenförmigen Blütenform des Granatapfelbaums)[1] ist die niedrige Einzelsäule einer Balustrade. Inhaltsverzeichnis 1 Form 2 Materialien 3 Geschichte 4 Weiterführende Literatur 5 Weblinks 6 Einzelnachweise 7 Anmerkungen Form Meist haben Baluster einen runden Qu...

Dieser Artikel befasst sich mit der Insel. Für weitere Begriffe siehe Sumatra (Begriffsklärung). Sumatra Gewässer Indischer Ozean, Straße von Malakka, Südchinesisches Meer, Javasee Inselgruppe Große Sundainseln Geographische Lage 0° S, 102° O-0.38333333333333101.766666666673805Koordinaten: 0° S, 102° O Lage von Sumatra Länge 1 700 km Breite 370 km Fläche 473.481 km² Höchste Erhebung Kerinchi3805 m Einwohner 50.365.538 (2010) 106 Ei...

 

Legislation by the Parliament of Ghana Data Protection Act, 2012Ghana Parliament Long title AN ACT to establish a Data Protection Commission, to protect the privacy of the individual and personal data by regulating the processing of personal information, to provide the process to obtain, hold, use or disclose personal information and for related matters. CitationAct 843Territorial extentThe Republic of GhanaEnacted byGhana ParliamentAssented toMay 10, 2012Signed byPresident of ...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!