Cette distribution est symétrique par rapport à (paramètre de position), le paramètre donnant une information sur l'étalement de la fonction (paramètre d'échelle).
L'inverse d'une variable aléatoire, de loi de Cauchy, suit une loi de Cauchy.
où x0 est un paramètre de localisation situant le pic de la fonction, et a est un paramètre d'échelle qui définit la moitié de la largeur à mi-hauteur.
car (à l'infini) d'où la divergence de l'intégrale : l'espérance n'existe pas.
A fortiori, la loi de Cauchy n'admet pas d'écart-type, car diverge. Pour la même raison, les moments d'ordre supérieur n'existent pas non plus. Ainsi on ne peut pas lui appliquer la loi forte des grands nombres.
Cependant, , qui en est la médiane, est souvent considéré comme la « moyenne » de la loi de Cauchy, car :
Loi de Cauchy et théorèmes limite
La loi de Cauchy est l'une de celles auxquelles la loi des grands nombres ne s'applique pas : partant d'un échantillon d'observations issues d'une loi de Cauchy, la moyenne empirique
ne converge pas vers une quantité déterministe (à savoir l'espérance de la loi). Au contraire, cette moyenne reste aléatoire : elle est elle-même distribuée selon une loi de Cauchy.
Elle nous montre ainsi que la condition de l'espérance définie selon l'intégrale de Lebesgue est indispensable à l'application de la loi. On remarque que les valeurs moyennes s'approchent de mais il arrive toujours un moment où une valeur trop éloignée « empêche » la moyenne de converger. La probabilité d'obtenir des valeurs éloignées de est en fait trop élevée pour permettre à la moyenne empirique de converger.
↑N. L. Johnson, S. Kotz et N. Balakrishnan, Continuous Univariate Distributions, Volume 1, New York, Wiley, , Chapter 16.
↑William Feller, An Introduction to Probability Theory and Its Applications, Volume II, New York, John Wiley & Sons Inc., , 2e éd., 704 (ISBN978-0-471-25709-7, lire en ligne)
(en) Stephen Stigler, « Cauchy and the witch of Agnesi: An historical note on the Cauchy distribution », Biometrika, vol. 61, , p. 375-380JSTOR:2334368