The runcinated 5-cell or small prismatodecachoron is constructed by expanding the cells of a 5-cell radially and filling in the gaps with triangular prisms (which are the face prisms and edge figures) and tetrahedra (cells of the dual 5-cell). It consists of 10 tetrahedra and 20 triangular prisms. The 10 tetrahedra correspond with the cells of a 5-cell and its dual.
Topologically, under its highest symmetry, [[3,3,3]], there is only one geometrical form, containing 10 tetrahedra and 20 uniform triangular prisms. The rectangles are always squares because the two pairs of edges correspond to the edges of the two sets of 5 regular tetrahedra each in dual orientation, which are made equal under extended symmetry.
E. L. Elte identified it in 1912 as a semiregular polytope.
Small prismatodecachoron (Acronym: Spid) (Jonathan Bowers)
Structure
Two of the ten tetrahedral cells meet at each vertex. The triangular prisms lie between them, joined to them by their triangular faces and to each other by their square faces. Each triangular prism is joined to its neighbouring triangular prisms in anti orientation (i.e., if edges A and B in the shared square face are joined to the triangular faces of one prism, then it is the other two edges that are joined to the triangular faces of the other prism); thus each pair of adjacent prisms, if rotated into the same hyperplane, would form a gyrobifastigium.
Configuration
Seen in a configuration matrix, all incidence counts between elements are shown. The diagonal f-vector numbers are derived through the Wythoff construction, dividing the full group order of a subgroup order by removing one mirror at a time.[1]
The maximal cross-section of the runcinated 5-cell with a 3-dimensional hyperplane is a cuboctahedron. This cross-section divides the runcinated 5-cell into two tetrahedral hypercupolae consisting of 5 tetrahedra and 10 triangular prisms each.
Projections
The tetrahedron-first orthographic projection of the runcinated 5-cell into 3-dimensional space has a cuboctahedral envelope. The structure of this projection is as follows:
The cuboctahedral envelope is divided internally as follows:
Four flattened tetrahedra join 4 of the triangular faces of the cuboctahedron to a central tetrahedron. These are the images of 5 of the tetrahedral cells.
The 6 square faces of the cuboctahedron are joined to the edges of the central tetrahedron via distorted triangular prisms. These are the images of 6 of the triangular prism cells.
The other 4 triangular faces are joined to the central tetrahedron via 4 triangular prisms (distorted by projection). These are the images of another 4 of the triangular prism cells.
This accounts for half of the runcinated 5-cell (5 tetrahedra and 10 triangular prisms), which may be thought of as the 'northern hemisphere'.
The other half, the 'southern hemisphere', corresponds to an isomorphic division of the cuboctahedron in dual orientation, in which the central tetrahedron is dual to the one in the first half. The triangular faces of the cuboctahedron join the triangular prisms in one hemisphere to the flattened tetrahedra in the other hemisphere, and vice versa. Thus, the southern hemisphere contains another 5 tetrahedra and another 10 triangular prisms, making the total of 10 tetrahedra and 20 triangular prisms.
Related skew polyhedron
The regular skew polyhedron, {4,6|3}, exists in 4-space with 6 squares around each vertex, in a zig-zagging nonplanar vertex figure. These square faces can be seen on the runcinated 5-cell, using all 60 edges and 20 vertices. The 40 triangular faces of the runcinated 5-cell can be seen as removed. The dual regular skew polyhedron, {6,4|3}, is similarly related to the hexagonal faces of the bitruncated 5-cell.
The runcitruncated 5-cell or prismatorhombated pentachoron is composed of 60 vertices, 150 edges, 120 faces, and 30 cells. The cells are: 5 truncated tetrahedra, 10 hexagonal prisms, 10 triangular prisms, and 5 cuboctahedra. Each vertex is surrounded by five cells: one truncated tetrahedron, two hexagonal prisms, one triangular prism, and one cuboctahedron; the vertex figure is a rectangular pyramid.
Seen in a configuration matrix, all incidence counts between elements are shown. The diagonal f-vector numbers are derived through the Wythoff construction, dividing the full group order of a subgroup order by removing one mirror at a time.[2]
The omnitruncated 5-cell or great prismatodecachoron is composed of 120 vertices, 240 edges, 150 faces (90 squares and 60 hexagons), and 30 cells. The cells are: 10 truncated octahedra, and 20 hexagonal prisms. Each vertex is surrounded by four cells: two truncated octahedra, and two hexagonal prisms, arranged in two phyllic disphenoidal vertex figures.
Seen in a configuration matrix, all incidence counts between elements are shown. The diagonal f-vector numbers are derived through the Wythoff construction, dividing the full group order of a subgroup order by removing one mirror at a time.[4]
Just as the truncated octahedron is the permutohedron of order 4, the omnitruncated 5-cell is the permutohedron of order 5.[5]
The omnitruncated 5-cell is a zonotope, the Minkowski sum of five line segments parallel to the five lines through the origin and the five vertices of the 5-cell.
The omnitruncated 5-cell has extended pentachoric symmetry, [[3,3,3]], order 240. The vertex figure of the omnitruncated 5-cell represents the Goursat tetrahedron of the [3,3,3] Coxeter group. The extended symmetry comes from a 2-fold rotation across the middle order-3 branch, and is represented more explicitly as [2+[3,3,3]].
Coordinates
The Cartesian coordinates of the vertices of an origin-centered omnitruncated 5-cell having edge length 2 are:
Nonuniform variants with [3,3,3] symmetry and two types of truncated octahedra can be doubled by placing the two types of truncated octahedra on each other to produce a nonuniform polychoron with 10 truncated octahedra, two types of 40 hexagonal prisms (20 ditrigonal prisms and 20 ditrigonal trapezoprisms), two kinds of 90 rectangular trapezoprisms (30 with D2d symmetry and 60 with C2v symmetry), and 240 vertices. Its vertex figure is an irregular triangular bipyramid.
This polychoron can then be alternated to produce another nonuniform polychoron with 10 icosahedra, two types of 40 octahedra (20 with S6 symmetry and 20 with D3 symmetry), three kinds of 210 tetrahedra (30 tetragonal disphenoids, 60 phyllic disphenoids, and 120 irregular tetrahedra), and 120 vertices. It has a symmetry of [[3,3,3]+], order 120.
The full snub 5-cell or omnisnub 5-cell, defined as an alternation of the omnitruncated 5-cell, cannot be made uniform, but it can be given Coxeter diagram , and symmetry [[3,3,3]]+, order 120, and constructed from 90 cells: 10 icosahedrons, 20 octahedrons, and 60 tetrahedrons filling the gaps at the deleted vertices. It has 300 faces (triangles), 270 edges, and 60 vertices.
Topologically, under its highest symmetry, [[3,3,3]]+, the 10 icosahedra have T (chiral tetrahedral) symmetry, while the 20 octahedra have D3 symmetry and the 60 tetrahedra have C2 symmetry.[7]
H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN978-0-471-01003-6[1]
(Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
(Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
(Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
Halaman ini berisi artikel tentang Viacom jenis asli (didirikan 1971) dan bentuk penggantinya (didirikan 1986) yang sekarang dikenal sebagai CBS Corporation. Untuk Viacom sesudah tahun 2005, lihat Viacom (perusahaan). Viacom Inc.SebelumnyaCBS Films (1952-1968)CBS Enterprises Inc. (1968-1970)JenisPublik (1952-2006)Kode emitenNYSE: VIAIndustriMediaPenerusCBS Corporation (hukum)Viacom (spin-off)Didirikan16 Maret 1952; 71 tahun lalu (1952-03-16)PendiriRalph BaruchDitutup3 Januari 2006; 17 ta...
زيت نباتي زيت الزيتون الأنواع زيت نباتي (قائمة الزيوت النباتية) Macerated oil (list) الإستخدامات زيت جفوف - طلاء زيتي زيت الطعام الوقود - ديزل حيوي حمض دهني دهون مشبعة دهون أحادية غير مشبعة أحماض دهنية متعددة غير مشبعة دهن تقابلي الزيوت النباتية هي الدهون الثلاثية المستخرجة من النبات
رون زيغلر معلومات شخصية الميلاد 12 مايو 1939(1939-05-12)كوفينغتون الوفاة 10 فبراير 2003 (63 سنة)كورونادو، كاليفورنيا سبب الوفاة نوبة قلبية مواطنة الولايات المتحدة مناصب السكرتير الصحفي للبيت الأبيض في المنصب20 يناير 1969 – 9 أغسطس 1974 جورج كريستيان الحياة العملية ا
Untuk kegunaan lain, lihat LP. Stasiun Lampegan SW04 Stasiun Lampegan, 2014LokasiCimenteng, Campaka, Cianjur, Jawa Barat 43263IndonesiaKetinggian+439 mOperatorKereta Api IndonesiaDaerah Operasi II BandungLetak dari pangkalkm 73+252 lintas Bogor–Bandung–Banjar–Kutoarjo–Yogyakarta[1]Jumlah peronSatu peron sisiJumlah jalur1Informasi lainKode stasiunLP1504[2]KlasifikasiIII/kecil[2]Operasi layananSiliwangi Stasiun sebelumnya Layanan lokal/komuter Stasiun berikutnya ...
База підводних човнів у Лор'яніфр. Base sous-marine de Lorient (Keroman)порт Лор'ян, Франція Бункер Кероман III, 2006Лор'ян Координати47°43′45″ пн. ш. 3°22′13″ зх. д. / 47.72917° пн. ш. 3.37028° зх. д. / 47.72917; -3.37028Історія об'єктаПобудовано1941—1944 (не завершено)БудівникОргані
Marquard (or Markward) von Salzbach was a Teutonic Knight, who played a prominent role in shaping the relationship between the Knights and the Grand Duchy of Lithuania between 1389 and 1410. He was taken captive in July 1384 by Vytautas, Grand Duke of Lithuania, after Vytautas reconciled with his cousin Jogaila during the Lithuanian Civil War (1381–1384). At the time Marquard was a castellan of New Marienburg, a Teutonic Castle on the Neman River.[1] Marquard became a friend and clo...
1985 film For other uses, see The Canterville Ghost (disambiguation). The Canterville GhostDVD cover of The Canterville GhostGenreFamilyFantasyDramaComedyBased onThe Canterville Ghost1887 short storyby Oscar WildeWritten byOscar Wilde (story)Screenplay byB.W. SandefurJoseph MaurerBradley WigorDirected byWilliam F. ClaxtonStarringRichard KileyJenny BeckShelley FabaresBarry Van DykeMary WickesMusic byMisha SegalCountry of originUnited StatesOriginal languageEnglishNo. of episodes1ProductionExec...
Artikel ini perlu dikembangkan agar dapat memenuhi kriteria sebagai entri Wikipedia.Bantulah untuk mengembangkan artikel ini. Jika tidak dikembangkan, artikel ini akan dihapus. Kekaisaran TibetBod བོད་618–842 BenderaPeta Kekaisaran Tibet pada masa puncak kejayaannya antara tahun 780-an dan 790-an EUIbu kotaLhasa, Pho brang (perkembahan pengadilan bergerak)Bahasa yang umum digunakanBahasa TibetAgama Buddhisme Tibet, BönPemerintahanMonarkiTsenpo (Kaisar) • 618–650 ...
Це список станцій Казанського метрополітену — системи ліній метрополітену в Казані (Республіка Татарстан). Перша і єдина лінія була відкрита 27 серпня 2005 року і в цей час складається з 11 станцій. Лінія і станції п о рЦентральна лінія Легенда оборотні тупики Авіабудівельна
Лиманська дирекція залізничних перевезень Тип підприємство і Список дирекцій УкрзалізниціГалузь залізничний транспортЗасновано 15 травня 2000, (дата реєстрації)Штаб-квартира м. Лиман, вул. Привокзальна, 2248°57′56″ пн. ш. 37°49′23″ сх. д. / 48.96556° п...
لمعانٍ أخرى، طالع نيدا (توضيح). نيدا (بالإسبانية: Neda)[1] - بلدية - نيدا (لا كرونيا) نيدا (لا كرونيا) خريطة الموقع تقسيم إداري البلد إسبانيا [2] المقاطعة مقاطعة لا كورونيا خصائص جغرافية إحداثيات 43°30′00″N 8°09′31″W / 43.5000016°N 8.1585283...
Irish baron (died 1667) John de CourcyBaron KingsaleTenure1663–1667PredecessorPatrick de Courcy, 20th Baron KingsaleSuccessorPatrick, 22nd Baron (a child)Died19 May 1667Spouse(s)Ellen MacCarthy ReaghIssueDetailPatrick, Almeric, & othersFatherPatrick de Courcy, 20th Baron KingsaleMotherMary FitzGerald John de Courcy, 21st Baron Kingsale (died 1667) sat in the House of Lords of the Irish Parliament of 1661–1666. Birth and origins Family tree John de Courcy with wife, parents, and other ...
Edible fruit cultivar 'Huntington' pearGenusPyrusSpeciesPyrus communisCultivar'Huntington'BreederJames P. HuntingtonOriginNew Rochelle, New York, USA The Huntington is a cultivar of the European Pear (Pyrus communis) and is a native of New Rochelle, New York in northeastern United States.[1] The original pear tree was found in the woods by James P. Huntington when still small and was transplanted to his yard on Main Street in the center of town. In 1856, when the tree was about 20 yea...
Wat Dibayavari ViharaKham Low Yi, Temple of Green DragonIn front of templeReligionAffiliationTaoist, BuddhistDeityGreen DragonLocationLocation119 Soi Thip Wari, Tri Phet Road, Wang Burapha Phirom Subdistrict, Phra Nakhon District, BangkokCountryThailandShown within ThailandGeographic coordinates13°44′45.89″N 100°29′55.45″E / 13.7460806°N 100.4987361°E / 13.7460806; 100.4987361ArchitectureFounderChinese and VietnameseCompleted1776–77 Wat Dibayavari Vihara ...
Folklore Folklore (álbum de Taylor Swift) Álbum de estúdio de Taylor Swift Lançamento 24 de julho de 2020 (2020-07-24) Gravação Abril—julho de 2020 (2020-07) Estúdio(s) Vários Conway Recording StudiosKitty Committee(Los Angeles)Electric Lady(Nova Iorque)Long Pond(Hudson Valley)Rough Customer(Brooklyn) Gênero(s) Indie folk · rock alternativo · electro-folk · chamber pop · indietronica Duração 63:29 Forma...
Birth anniversary of B. R. Ambedkar, festival and holiday Ambedkar JayantiAmbedkar Jayanti Procession at Chaitya BhoomiOfficial nameAmbedkar Jayanti[1]Also calledBhim JayantiObserved byIndiaTypeSecular; birth anniversary of B.R. AmbedkarCelebrationsAmbedkar JayantiObservancesCommunity, historical celebrationsDate14 AprilFrequencyAnnualRelated toAshok Vijaya DashmiConstitution Day (India) Ambedkar Jayanti or Bhim Jayanti is observed on 14 April to commemorate the memory of B....
All-American college football player, professional wrestler (1961–2021) The PatriotWilkes in 2015Birth nameDel WilkesBorn(1961-12-21)December 21, 1961Columbia, South Carolina, U.S.[1]DiedJune 30, 2021(2021-06-30) (aged 59)Newberry, South Carolina, U.S.Professional wrestling careerRing name(s)Del WilkesThe Patriot[1]The Trooper[1]Billed height6 ft 5 in (196 cm)[2]Billed weight275 lb (125 kg)[2]Billed fromWashington, D.C. (...
Para la película basada en esta novela, véase Harry Potter y la piedra filosofal (película). Para el videojuego, véase Harry Potter y la piedra filosofal (videojuego). Harry Potter y la piedra filosofal de J. K. Rowling Género NovelaSubgénero FantasíaAventurasTema(s) Mago y piedra filosofal Universo ficticio Universo de Harry Potter Ambientada en 1992 y 1991 Londres en la ficción, Privet Drive, terrenos de Hogwarts, Diagon Alley, Reino Unido, Inglaterra y Escocia Edición origina...
No debe confundirse con Marquesado del Turia. Marquesado de Valle del Turia Corona marquesalPrimer titular José Belda y BalartConcesión Carlos VII, (pretendiente de la rama carlista)27 de febrero de 1876Actual titular José María de Belda y González-Madroño[editar datos en Wikidata] Carlos VII, en 1876, pretendiente de la rama carlista. Concedió el Condado de Galiana. El Marquesado de Valle del Turia, es un título nobiliario español, creado el 27 de febrero de 1876, por el r...