Cells of the vertex figure are ten tetrahedrons and 20 triangular prisms, corresponding to the ten 5-cells and 20 rectified 5-cells that meet at each vertex. All the vertices lie in parallel realms in which they form alternated cubic honeycombs, the tetrahedra being either tops of the rectified 5-cell or the bases of the 5-cell, and the octahedra being the bottoms of the rectified 5-cell.[1]
Alternate names
Cyclopentachoric tetracomb
Pentachoric-dispentachoric tetracomb
Projection by folding
The 5-cell honeycomb can be projected into the 2-dimensional square tiling by a geometric folding operation that maps two pairs of mirrors into each other, sharing the same vertex arrangement:
Two different aperiodic tilings with 5-fold symmetry can be obtained by projecting two-dimensional slices of the honeycomb: the Penrose tiling composed of rhombi, and the Tübingen triangle tiling composed of isosceles triangles.[2]
The tops of the 5-cells in this honeycomb adjoin the bases of the 5-cells, and vice versa, in adjacent laminae (or layers); but alternating laminae may be inverted so that the tops of the rectified 5-cells adjoin the tops of the rectified 5-cells and the bases of the 5-cells adjoin the bases of other 5-cells. This inversion results in another non-Wythoffian uniform convex honeycomb. Octahedral prisms and tetrahedral prisms may be inserted in between alternated laminae as well, resulting in two more non-Wythoffian elongated uniform honeycombs.[6]
The cyclotruncated 4-simplex honeycomb or cyclotruncated 5-cell honeycomb is a space-filling tessellationhoneycomb. It can also be seen as a birectified 5-cell honeycomb.
It can be constructed as five sets of parallel hyperplanes that divide space into two half-spaces. The 3-space hyperplanes contain quarter cubic honeycombs as a collection facets.[8]
The truncated 4-simplex honeycomb or truncated 5-cell honeycomb is a space-filling tessellationhoneycomb. It can also be called a cyclocantitruncated 5-cell honeycomb.
The cantellated 4-simplex honeycomb or cantellated 5-cell honeycomb is a space-filling tessellationhoneycomb. It can also be called a cycloruncitruncated 5-cell honeycomb.
The bitruncated 4-simplex honeycomb or bitruncated 5-cell honeycomb is a space-filling tessellationhoneycomb. It can also be called a cycloruncicantitruncated 5-cell honeycomb.
The omnitruncated 4-simplex honeycomb or omnitruncated 5-cell honeycomb is a space-filling tessellationhoneycomb. It can also be seen as a cyclosteriruncicantitruncated 5-cell honeycomb.
.
It is composed entirely of omnitruncated 5-cell (omnitruncated 4-simplex) facets.
Coxeter calls this Hinton's honeycomb after C. H. Hinton, who described it in his book The Fourth Dimension in 1906.[9]
The A* 4 lattice is the union of five A4 lattices, and is the dual to the omnitruncated 5-cell honeycomb, and therefore the Voronoi cell of this lattice is an omnitruncated 5-cell.[10]
∪ ∪ ∪ ∪ = dual of
Alternated form
This honeycomb can be alternated, creating omnisnub 5-cells with irregular 5-cells created at the deleted vertices. Although it is not uniform, the 5-cells have a symmetry of order 10.
^Baake, M.; Kramer, P.; Schlottmann, M.; Zeidler, D. (December 1990). "PLANAR PATTERNS WITH FIVEFOLD SYMMETRY AS SECTIONS OF PERIODIC STRUCTURES IN 4-SPACE". International Journal of Modern Physics B. 04 (15n16): 2217–2268. doi:10.1142/S0217979290001054.
Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN978-0-471-01003-6[1]
(Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380–407, MR 2,10] (1.9 Uniform space-fillings)
(Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
George Olshevsky, Uniform Panoploid Tetracombs, Manuscript (2006) (Complete list of 11 convex uniform tilings, 28 convex uniform honeycombs, and 143 convex uniform tetracombs) Model 134