5-cube

5-cube
penteract (pent)
Type uniform 5-polytope
Schläfli symbol {4,3,3,3}
Coxeter diagram
4-faces 10 tesseracts
Cells 40 cubes
Faces 80 squares
Edges 80
Vertices 32
Vertex figure
5-cell
Coxeter group B5, [4,33], order 3840
Dual 5-orthoplex
Base point (1,1,1,1,1,1)
Circumradius sqrt(5)/2 = 1.118034
Properties convex, isogonal regular, Hanner polytope

In five-dimensional geometry, a 5-cube is a name for a five-dimensional hypercube with 32 vertices, 80 edges, 80 square faces, 40 cubic cells, and 10 tesseract 4-faces.

It is represented by Schläfli symbol {4,3,3,3} or {4,33}, constructed as 3 tesseracts, {4,3,3}, around each cubic ridge.

It is a part of an infinite hypercube family. The dual of a 5-cube is the 5-orthoplex, of the infinite family of orthoplexes.

Applying an alternation operation, deleting alternating vertices of the 5-cube, creates another uniform 5-polytope, called a 5-demicube, which is also part of an infinite family called the demihypercubes.

The 5-cube can be seen as an order-3 tesseractic honeycomb on a 4-sphere. It is related to the Euclidean 4-space (order-4) tesseractic honeycomb and paracompact hyperbolic honeycomb order-5 tesseractic honeycomb.

As a configuration

This configuration matrix represents the 5-cube. The rows and columns correspond to vertices, edges, faces, cells, and 4-faces. The diagonal numbers say how many of each element occur in the whole 5-cube. The nondiagonal numbers say how many of the column's element occur in or at the row's element.[1][2]

Cartesian coordinates

The Cartesian coordinates of the vertices of a 5-cube centered at the origin and having edge length 2 are

(±1,±1,±1,±1,±1),

while this 5-cube's interior consists of all points (x0, x1, x2, x3, x4) with -1 < xi < 1 for all i.

Images

n-cube Coxeter plane projections in the Bk Coxeter groups project into k-cube graphs, with power of two vertices overlapping in the projective graphs.

Orthographic projections
Coxeter plane B5 B4 / D5 B3 / D4 / A2
Graph
Dihedral symmetry [10] [8] [6]
Coxeter plane Other B2 A3
Graph
Dihedral symmetry [2] [4] [4]
More orthographic projections

Wireframe skew direction

B5 Coxeter plane
Graph

Vertex-edge graph.
Perspective projections

A perspective projection 3D to 2D of stereographic projection 4D to 3D of Schlegel diagram 5D to 4D.
Net

4D net of the 5-cube, perspective projected into 3D.

Projection

The 5-cube can be projected down to 3 dimensions with a rhombic icosahedron envelope. There are 22 exterior vertices, and 10 interior vertices. The 10 interior vertices have the convex hull of a pentagonal antiprism. The 80 edges project into 40 external edges and 40 internal ones. The 40 cubes project into golden rhombohedra which can be used to dissect the rhombic icosahedron. The projection vectors are u = {1, φ, 0, -1, φ}, v = {φ, 0, 1, φ, 0}, w = {0, 1, φ, 0, -1}, where φ is the golden ratio, .

rhombic icosahedron 5-cube
Perspective orthogonal

It is also possible to project penteracts into three-dimensional space, similarly to projecting a cube into two-dimensional space.

A 3D perspective projection of a penteract undergoing a simple rotation about the W1-W2 orthogonal plane A 3D perspective projection of a penteract undergoing a double rotation about the X-W1 and Z-W2 orthogonal planes

Symmetry

The 5-cube has Coxeter group symmetry B5, abstract structure , order 3840, containing 25 hyperplanes of reflection. The Schläfli symbol for the 5-cube, {4,3,3,3}, matches the Coxeter notation symmetry [4,3,3,3].

Prisms

All hypercubes have lower symmetry forms constructed as prisms. The 5-cube has 7 prismatic forms from the lowest 5-orthotope, { }5, and upwards as orthogonal edges are constrained to be of equal length. The vertices in a prism are equal to the product of the vertices in the elements. The edges of a prism can be partitioned into the number of edges in an element times the number of vertices in all the other elements.

Description Schläfli symbol Coxeter-Dynkin diagram Vertices Edges Coxeter notation
Symmetry
Order
5-cube {4,3,3,3} 32 80 [4,3,3,3] 3840
tesseractic prism {4,3,3}×{ } 16×2 = 32 64 + 16 = 80 [4,3,3,2] 768
cube-square duoprism {4,3}×{4} 8×4 = 32 48 + 32 = 80 [4,3,2,4] 384
cube-rectangle duoprism {4,3}×{ }2 8×22 = 32 48 + 2×16 = 80 [4,3,2,2] 192
square-square duoprism prism {4}2×{ } 42×2 = 32 2×32 + 16 = 80 [4,2,4,2] 128
square-rectangular parallelepiped duoprism {4}×{ }3 4×23 = 32 32 + 3×16 = 80 [4,2,2,2] 64
5-orthotope { }5 25 = 32 5×16 = 80 [2,2,2,2] 32

The 5-cube is 5th in a series of hypercube:

Petrie polygon orthographic projections
Line segment Square Cube 4-cube 5-cube 6-cube 7-cube 8-cube 9-cube 10-cube


The regular skew polyhedron {4,5| 4} can be realized within the 5-cube, with its 32 vertices, 80 edges, and 40 square faces, and the other 40 square faces of the 5-cube become square holes.

This polytope is one of 31 uniform 5-polytopes generated from the regular 5-cube or 5-orthoplex.

B5 polytopes

β5

t1β5

t2γ5

t1γ5

γ5

t0,1β5

t0,2β5

t1,2β5

t0,3β5

t1,3γ5

t1,2γ5

t0,4γ5

t0,3γ5

t0,2γ5

t0,1γ5

t0,1,2β5

t0,1,3β5

t0,2,3β5

t1,2,3γ5

t0,1,4β5

t0,2,4γ5

t0,2,3γ5

t0,1,4γ5

t0,1,3γ5

t0,1,2γ5

t0,1,2,3β5

t0,1,2,4β5

t0,1,3,4γ5

t0,1,2,4γ5

t0,1,2,3γ5

t0,1,2,3,4γ5

References

  1. ^ Coxeter, Regular Polytopes, sec 1.8 Configurations
  2. ^ Coxeter, Complex Regular Polytopes, p.117
  • H.S.M. Coxeter:
    • Coxeter, Regular Polytopes, (3rd edition, 1973), Dover edition, ISBN 0-486-61480-8, p. 296, Table I (iii): Regular Polytopes, three regular polytopes in n-dimensions (n≥5)
    • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
      • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
      • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
      • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. (1966)
  • Klitzing, Richard. "5D uniform polytopes (polytera) o3o3o3o4x - pent".
Family An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
Uniform polychoron Pentachoron 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds

Read other articles:

Australian rules footballer and cricketer This article is about the Australian rules football player. For other people, see Charles Baker (disambiguation). Australian rules footballer Charlie Baker Personal informationFull name Charles Michael BakerDate of birth (1880-06-18)18 June 1880Place of birth Ballarat East, VictoriaDate of death 4 May 1962(1962-05-04) (aged 81)Place of death Ballarat, VictoriaOriginal team(s) St Pats, BallaratHeight 175 cm (5 ft 9 in)Playing c...

 

Werner-von-Siemens-Gymnasium Weißenburg Haupteingang (von Norden her gesehen) Schulform Gymnasium mit naturwissenschaftlich-technologischem, sprachlichem und wirtschaftswissenschaftlichem Zweig Gründung 1337 / 1932 Adresse An der Hagenau 24 Ort Weißenburg in Bayern Land Bayern Staat Deutschland Koordinaten 49° 1′ 31″ N, 10° 58′ 37″ O49.0254110.97687Koordinaten: 49° 1′ 31″ N, 10° 58′ 37″ O Träger Landkreis Wei...

 

En informática, la optimización por nube de partículas u optimización por enjambre de partículas (conocida por sus siglas en inglés: PSO, de «particle swarm optimization») hace referencia a una metaheurística que evoca el comportamiento de las partículas en la naturaleza. Los métodos PSO se atribuyen originalmente a los investigadores Kennedy, Eberhart[1]​ y Shi.[2]​ En un principio fueron concebidos para elaborar modelos de conductas sociales,[3]​ como el movimie...

St. Michael in der Altstadt von Palma Eingangsportal Die Basilika St. Michael (spanisch Basílica de San Miguel) ist eine Kirche in der Altstadt von Palma auf Mallorca in Spanien. Die Kirche im Bistum Mallorca ist dem Erzengel Michael geweiht und trägt den Titel einer Basilica minor.[1] Inhaltsverzeichnis 1 Geschichte 2 Bauwerk 3 Weblinks 4 Einzelnachweise Geschichte San Miquel wurde nach der Reconquista ab 1229 errichtet. Die Kirche soll an der Stelle der großen Moschee von Madina ...

 

People of British descent in Africa Anglo-African redirects here. For British people of black African heritage, see Black British. For the abolitionist newspaper, see The Anglo-African. For the Lagos newspaper, see The Anglo-African (Lagos). For the term Anglo-African, see Anglo § Africa. British diaspora in AfricaTotal population2–2.5 millionRegions with significant populations South Africa1,600,000[1] Zambia40,000[2] Kenya32,000[3] Zimbabw...

 

Tudung saji plastik di sebuah rumah di Indonesia Tudung saji merupakan alat dapur yang berfungsi sebagai penutup hidangan atau makanan di atas meja. Kerajinan daerah Tudung saji dapat dibuat dari beragam bahan misalnya bambu, plastik, dedaunan yang dikeringkan atau alumunium. Di berbagai daerah, tudung saji merupakan hasil kerajinan tangan masyarakat setempat. Di Kepulauan Bangka-Belitung, tudung saji bersama dulang adalah lambang dari gotong royong dan tradisi nganggung.[1] Pada masy...

Filipino politician This biography of a living person needs additional citations for verification. Please help by adding reliable sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately from the article and its talk page, especially if potentially libelous.Find sources: Antonio Ferrer – news · newspapers · books · scholar · JSTOR (May 2013) (Learn how and when to remove this template message) I...

 

You can help expand this article with text translated from the corresponding article in Czech. (April 2020) Click [show] for important translation instructions. View a machine-translated version of the Czech article. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text into the English Wikipedia....

 

2012 American filmHibakushaDirected byChoz BelenSteve NguyenWritten bySteve NguyenIvan TsangProduced bySteve NguyenDean MatsudaBrian L. TanStarringKarin Anna CheungConnie LimDaisuke SuzukiWilliam Frederick KnightJane LuiProductioncompanyStudio APARelease date September 28, 2012 (2012-09-28) Running time45 minutesCountryUnited StatesLanguageEnglish Hibakusha is a 2012 American animated short film directed by Steve Nguyen and Choz Belen, and produced by Iconic Films, the Document...

Sport stadium in Oregon, USAThis article is about Hillsboro Stadium. For the Hillsborough Stadium in Sheffield, England, see Hillsborough Stadium. Hillsboro StadiumMain grandstand in 2009HillsboroLocation in the United StatesShow map of the United StatesHillsboroLocation in OregonShow map of OregonAddress4450 NE Century BoulevardLocationHillsboro, Oregon, U.S.Coordinates45°33′14″N 122°54′25″W / 45.554°N 122.907°W / 45.554; -122.907OwnerCity of HillsboroOper...

 

Yang Dipertuan Besar (juga dieja sebagai Yang di-Pertuan Besar) adalah gelar bangsawan Melayu. Indonesia Kesultanan Riau-Lingga Di Kesultanan Lingga, Yang Dipertuan Besar adalah gelar lain dari sultan. Kesultanan Asahan Sultan Asahan terakhir (sebelum Republik Indonesia berdiri) memiliki nama lengkap Sri Paduka Tuanku Sultan Sha'ibun 'Abdu'l Jalil Rahmad Shah III ibnu al-Marhum Sultan Muhammad Husain, Sultan dan Yang di-Pertuan Besar Asahan[1] Kesultanan Siak Yang Dipertuan Besar Siak...

 

Lukas Graham Lukas Graham 2016年基本情報出身地  デンマーク コペンハーゲンジャンル Popsoul活動期間 2011年 -レーベル Copenhagen RecordsWarnerThen We Take the World公式サイト lukasgraham.comメンバー Lukas ForchhammerMark FalgrenMagnus Larsson旧メンバー Anders KirkKasper DaugaardMorten Ristorp ルーカス・グラハム(Lukas Graham)は、デンマークコペンハーゲン出身のソウル・ポップ・バンド。ルーカス・フォ...

1987 studio album by Regine VelasquezRegineStudio album by Regine VelasquezReleased1987Recorded1986-1987GenrePop, OPMLength30:54LanguageEnglish, TagalogLabelViva RecordsProducerVic del Rosario, Jr. (executive)Ronnie HenaresRegine Velasquez chronology Regine(1987) Nineteen '90(1989) Singles from Regine Isang LahiReleased: 1986 Kung Maibabalik Ko LangReleased: 1987 Maybe Now, Maybe ThenReleased: 1987 Urong SulongReleased: 1988 Regine is the first studio album by Filipino singer-actress ...

 

Podcast The Majority Report redirects here. For the British Parliamentary report published after the 1905 Royal Commission of the Poor Laws, see Majority report (Poor Law). PodcastThe Majority Report with Sam Seder (2010–present)The Sam Seder Show (2006–2007)The Majority Report with Janeane Garofalo (2004–2006)PresentationHosted bySam Seder (2006–2007, 2010–present)Janeane Garofalo (2004–2006) Co-hosted byEmma Vigeland (2020–present)Matt Lech (2015–present)Bradley Alsop (2021...

 

Lexus CT (ZWA10) Общие данные Производитель Lexus (Toyota Motor Corporation) Годы производства 2011—2022 Сборка Миявака, Япония Класс Компактный Дизайн и конструкция Тип кузова 5‑дв. хетчбэк (5‑мест.) Платформа Toyota MC Компоновка переднемоторная, переднеприводная Колёсная формула 4 × 2 Д...

Afghan journalist Shafiqa HabibiShafiqa Habibi talks to Hasht-e Subh Daily, 8 March 2019Born1941 (age 81–82)Kabul, Kingdom of AfghanistanNationalityAfghanOccupation(s)journalist, television anchor, activist and politicianYears active1961 - Shafiqa Habibi is a journalist, television anchor, activist and politician from Afghanistan. She is known for her work to support women journalists, and for her 2004 candidacy for Vice President of Afghanistan as the running mate of Abdul Ra...

 

Book by Edgar Rice Burroughs The Oakdale Affair and The Rider First book edition of The Oakdale Affair and The RiderAuthorEdgar Rice BurroughsIllustratorJohn Coleman BurroughsCover artistJohn Coleman BurroughsCountryUnited StatesLanguageEnglishGenreNovelPublisherEdgar Rice Burroughs, Inc.Publication date1937Media typePrintPages172 and 144 p. The Oakdale Affair and The Rider is a collection of two short novels by American writer Edgar Rice Burroughs. The Oakdale Affair, a contemporar...

 

For the EP, see Like Wow (EP). 2001 single by Leslie CarterLike Wow!Single by Leslie Carterfrom the album Shrek: Music from the Original Motion Picture B-sideTrueReleasedJanuary 13, 2001 (2001-01-13) (US)June 12, 2001 (2001-06-12) (Australia)Recorded2000GenrePopLabelDreamWorksSongwriter(s)Jimmy Harry and Sandra St. VictorInternational cover Like Wow! is the debut single by American recording artist Leslie Carter. Her debut album of the same name was shelved, maki...

Bài này viết về nhạc sĩ Huỳnh Anh. Đối với loài hoa, xem Huỳnh anh. Huỳnh AnhThông tin cá nhânSinh(1932-01-02)2 tháng 1, 1932Cần Thơ, Nam Kỳ, Đông Dương thuộc PhápMất13 tháng 12, 2013(2013-12-13) (81 tuổi)San Francisco, California, Hoa KỳGiới tínhnamDân tộcKinhNghề nghiệpNhạc sĩ, Nhạc côngSự nghiệp âm nhạcNhạc cụTrốngCa khúcMưa rừngKiếp cầm caRừng lá thay chưa xts Huỳnh Anh (2 tháng 1 năm 1932 - 13 t...

 

Private university in Manado, Indonesia This article relies excessively on references to primary sources. Please improve this article by adding secondary or tertiary sources. Find sources: De La Salle Catholic University Manado – news · newspapers · books · scholar · JSTOR (January 2011) (Learn how and when to remove this template message) Universitas Katolik De La Salle ManadoCatholic University of De La Salle ManadoMottoReligio, Mores, Cultura (Latin...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!