Orthographic projection

Orthographic projection (also orthogonal projection and analemma)[a] is a means of representing three-dimensional objects in two dimensions. Orthographic projection is a form of parallel projection in which all the projection lines are orthogonal to the projection plane,[2] resulting in every plane of the scene appearing in affine transformation on the viewing surface. The obverse of an orthographic projection is an oblique projection, which is a parallel projection in which the projection lines are not orthogonal to the projection plane.

The term orthographic sometimes means a technique in multiview projection in which principal axes or the planes of the subject are also parallel with the projection plane to create the primary views.[2] If the principal planes or axes of an object in an orthographic projection are not parallel with the projection plane, the depiction is called axonometric or an auxiliary views. (Axonometric projection is synonymous with parallel projection.) Sub-types of primary views include plans, elevations, and sections; sub-types of auxiliary views include isometric, dimetric, and trimetric projections.

A lens that provides an orthographic projection is an object-space telecentric lens.

Geometry

Comparison of several types of graphical projection
Various projections and how they are produced
The three views. The percentages show the amount of foreshortening.

A simple orthographic projection onto the plane z = 0 can be defined by the following matrix:

For each point v = (vx, vy, vz), the transformed point Pv would be

Often, it is more useful to use homogeneous coordinates. The transformation above can be represented for homogeneous coordinates as

For each homogeneous vector v = (vx, vy, vz, 1), the transformed vector Pv would be

In computer graphics, one of the most common matrices used for orthographic projection can be defined by a 6-tuple, (left, right, bottom, top, near, far), which defines the clipping planes. These planes form a box with the minimum corner at (left, bottom, -near) and the maximum corner at (right, top, -far).[3]

The box is translated so that its center is at the origin, then it is scaled to the unit cube which is defined by having a minimum corner at (−1,−1,−1) and a maximum corner at (1,1,1).

The orthographic transform can be given by the following matrix:

which can be given as a scaling S followed by a translation T of the form

The inversion of the projection matrix P−1, which can be used as the unprojection matrix is defined:

Types

Classification of Orthographic projection and some 3D projections

Three sub-types of orthographic projection are isometric projection, dimetric projection, and trimetric projection, depending on the exact angle at which the view deviates from the orthogonal.[2][4] Typically in axonometric drawing, as in other types of pictorials, one axis of space is shown to be vertical.

In isometric projection, the most commonly used form of axonometric projection in engineering drawing,[5] the direction of viewing is such that the three axes of space appear equally foreshortened, and there is a common angle of 120° between them. As the distortion caused by foreshortening is uniform, the proportionality between lengths is preserved, and the axes share a common scale; this eases one's ability to take measurements directly from the drawing. Another advantage is that 120° angles are easily constructed using only a compass and straightedge.

In dimetric projection, the direction of viewing is such that two of the three axes of space appear equally foreshortened, of which the attendant scale and angles of presentation are determined according to the angle of viewing; the scale of the third direction is determined separately.

In trimetric projection, the direction of viewing is such that all of the three axes of space appear unequally foreshortened. The scale along each of the three axes and the angles among them are determined separately as dictated by the angle of viewing. Trimetric perspective is seldom used in technical drawings.[4]

Multiview projection

Symbols used to define whether a multiview projection is either third-angle (right) or first-angle (left)

In multiview projection, up to six pictures of an object are produced, called primary views, with each projection plane parallel to one of the coordinate axes of the object. The views are positioned relative to each other according to either of two schemes: first-angle or third-angle projection. In each, the appearances of views may be thought of as being projected onto planes that form a six-sided box around the object. Although six different sides can be drawn, usually three views of a drawing give enough information to make a three-dimensional object. These views are known as front view (also elevation), top view (also plan) and end view (also section). When the plane or axis of the object depicted is not parallel to the projection plane, and where multiple sides of an object are visible in the same image, it is called an auxiliary view. Thus isometric projection, dimetric projection and trimetric projection would be considered auxiliary views in multiview projection. A typical characteristic of multiview projection is that one axis of space is usually displayed as vertical.

Cartography

Orthographic projection (equatorial aspect) of eastern hemisphere 30°W–150°E

An orthographic projection map is a map projection of cartography. Like the stereographic projection and gnomonic projection, orthographic projection is a perspective (or azimuthal) projection, in which the sphere is projected onto a tangent plane or secant plane. The point of perspective for the orthographic projection is at infinite distance. It depicts a hemisphere of the globe as it appears from outer space, where the horizon is a great circle. The shapes and areas are distorted, particularly near the edges.[6][7]

The orthographic projection has been known since antiquity, with its cartographic uses being well documented. Hipparchus used the projection in the 2nd century BC to determine the places of star-rise and star-set. In about 14 BC, Roman engineer Marcus Vitruvius Pollio used the projection to construct sundials and to compute sun positions.[7]

Vitruvius also seems to have devised the term orthographic – from the Greek orthos ("straight") and graphē ("drawing") – for the projection. However, the name analemma, which also meant a sundial showing latitude and longitude, was the common name until François d'Aguilon of Antwerp promoted its present name in 1613.[7]

The earliest surviving maps on the projection appear as woodcut drawings of terrestrial globes of 1509 (anonymous), 1533 and 1551 (Johannes Schöner), and 1524 and 1551 (Apian).[7]

Notes

  1. ^ This usage is obsolete; the common meaning of "analemma" is a diagram of the position of the Sun from the Earth.[1]

References

  1. ^ Sawyer, F., Of Analemmas, Mean Time and the Analemmatic Sundial
  2. ^ a b c Maynard, Patric (2005). Drawing Distinctions: The Varieties of Graphic Expression. Cornell University Press. p. 22. ISBN 0-8014-7280-6.
  3. ^ Thormählen, Thorsten (November 26, 2021). "Graphics Programming – Cameras: Parallel Projection – Part 6, Chapter 2". Mathematik Uni Marburg. pp. 8 ff. Retrieved 2022-04-22.
  4. ^ a b McReynolds, Tom; David Blythe (2005). Advanced graphics programming using openGL. Elsevier. p. 502. ISBN 1-55860-659-9.
  5. ^ Godse, Atul P. (1984). Computer graphics. Technical Publications. p. 29. ISBN 81-8431-558-9.
  6. ^ Snyder, J. P. (1987). Map Projections—A Working Manual (US Geologic Survey Professional Paper 1395). Washington, D.C.: US Government Printing Office. pp. 145–153.
  7. ^ a b c d Snyder, John P. (1993). Flattening the Earth: Two Thousand Years of Map Projections pp. 16–18. Chicago and London: The University of Chicago Press. ISBN 0-226-76746-9.

Read other articles:

Чо́колівкаКиїв площа Космонавтів Загальна інформація 50°25′30″ пн. ш. 30°27′14″ сх. д. / 50.42500° пн. ш. 30.45389° сх. д. / 50.42500; 30.45389Координати: 50°25′30″ пн. ш. 30°27′14″ сх. д. / 50.42500° пн. ш. 30.45389° сх. д. / 50.42500; 30.45389Країна  ...

 

Everett Shinn (L-R), Everett Shinn, Henri Robert y John SloanInformación personalNacimiento 6 de noviembre de 1876 Woodstown, Nueva JerseyFallecimiento 1 de mayo de 1953 (76 años) Nueva YorkNacionalidad EstadounidenseFamiliaCónyuge Florence Scovel Shinn EducaciónEducado en Spring Garden College Alumno de Thomas Pollock Anshutz Información profesionalÁrea PinturaMovimientos Realismo Americano, Arte modernoMiembro de Academia Estadounidense de las Artes y las Letras [editar dato...

 

Om Основна інформаціяМісце народження Сан-Франциско, СШАРоки активності 2003–до сьогодніЖанр Stoner rock[1] doom metal[2] drone metal[3] Лейбли Drag City, Southern Lord, Holy Mountain, Sub Popomvibratory.com  Файли у Вікісховищі Om (іноді пишеться як OM) — американський хеві-метал гурт з Сан-Франциско, К...

2022 Australian federal election Pre-election pendulum Polling National Electorate Candidates Political parties National results House of Representatives Senate Post-election pendulum State and territory results New South Wales Victoria Queensland Western Australia South Australia Tasmania Australian Capital Territory Northern Territory vte See also: Pre-election pendulum for the 2022 Australian federal election The Australian Labor Party won the 2022 federal election, winning 77 of 151 seats...

 

Este artículo o sección necesita referencias que aparezcan en una publicación acreditada.Este aviso fue puesto el 14 de marzo de 2020. Muestra preparada para la determinación de la materia seca de la paja de maíz para producir energía. La materia seca o extracto seco es la parte que resta de un material tras extraer toda el agua posible a través de un calentamiento hecho en condiciones de laboratorio. Es una noción usada principalmente en biología y agricultura. El procedimiento cons...

 

Der Titel dieses Artikels ist mehrdeutig. Siehe auch: Balstad, Ballstedt bzw. Ballenstedt. Ballstädt Landgemeinde Nessetal Wappen von Ballstädt Koordinaten: 51° 2′ N, 10° 43′ O51.03361111111110.716944444444270Koordinaten: 51° 2′ 1″ N, 10° 43′ 1″ O Höhe: 270 m Fläche: 11,86 km² Einwohner: 644 (31. Dez. 2018) Bevölkerungsdichte: 54 Einwohner/km² Eingemeindung: 1. Januar 2019 Postleitzahl: 99869 Vor...

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Kasma Booty – berita · surat kabar · buku · cendekiawan · JSTOR Kasma Booty AMN LahirKasmah binti Abdullah1932Kisaran, Keresidenan Sumatera Timur, Hindia Timur Belanda (kini Sumatera Utara, Indonesia)Men...

 

Michael Kunze (2009) Michael Kunze (* 9. November 1943 in Prag; auch unter dem Pseudonym Stephan Prager bekannt[1]) ist ein deutscher Liedtexter, Schriftsteller, Librettist, Rechtshistoriker, Jurist, und Musikproduzent. Kunze verfasste die Texte von zahlreichen deutschen und internationalen Popmusik-Hits und wurde dafür mit den Grammy und ECHO Lifetime Awards, dem GEMA-Musikautorenpreis sowie 79 Goldenen und Platin-Schallplatten ausgezeichnet. Er ist der Verfasser mehrerer Bücher un...

 

State park in the U.S. state of Oregon Dabney State Recreation AreaThe Sandy River at Dabney SRA.Show map of OregonShow map of the United StatesTypePublic, stateLocationMultnomah County, OregonNearest cityTroutdaleCoordinates45°31′02″N 122°21′12″W / 45.5173423°N 122.353424°W / 45.5173423; -122.353424[1]Operated byOregon Parks and Recreation Department Dabney State Recreation Area is a park on the Sandy River in the U.S. state of Oregon. Lo...

Louis E. Atkinson Louis Evans Atkinson (* 16. April 1841 in Delaware Township, Juniata County, Pennsylvania; † 5. Februar 1910 in Mifflintown, Pennsylvania) war ein US-amerikanischer Politiker. Zwischen 1883 und 1893 vertrat er den Bundesstaat Pennsylvania im US-Repräsentantenhaus. Werdegang Louis Atkinson besuchte die öffentlichen Schulen seiner Heimat. Nach einem anschließenden Medizinstudium am College of the City of New York und seiner 1861 erfolgten Zulassung als Arzt begann er...

 

ГородЛибчице-над-ВлтавоуLibčice nad Vltavou Флаг Герб 50°11′57″ с. ш. 14°21′46″ в. д.HGЯO Страна  Чехия Край Среднечешский Район Прага-запад Староста Петра Пелешкова История и география Первое упоминание 993[1] Площадь 7,101057 км²[2] Высота центра 207 м Население На...

 

Orson Welles in Citizen Kane The sources for Citizen Kane, the 1941 American motion picture that marked the feature film debut of Orson Welles, have been the subject of speculation and controversy since the project's inception. With a story spanning 60 years, the quasi-biographical film examines the life and legacy of Charles Foster Kane, played by Welles, a fictional character based in part upon the American newspaper magnate William Randolph Hearst and Chicago tycoons Samuel Insull and Haro...

1996 studio album by Erik FriedlanderThe WatchmanStudio album by Erik FriedlanderReleasedAugust 20, 1996RecordedJanuary 30, 1996 Seltzer Sound, New York, NYGenreAvant-garde, Jazz, Contemporary classical musicLength56:05LabelTzadik TZ 7107ProducerErik FriedlanderErik Friedlander chronology Chimera(1995) The Watchman(1996) Topaz(1999) The Watchman is a 1996 album by cellist Erik Friedlander which was released on the Tzadik label.[1][2] Reception Professional ratingsRevie...

 

American new-age music record label This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Narada Productions – news · newspapers · books · scholar · JSTOR (November 2018) (Learn how and when to remove this template message) Narada ProductionsParent companyThe Blue Note Label GroupFounded1983 (1983)FounderJohn...

 

Abdul Rahim NayyarBornDecember 1883Kapurthala, Punjab, British IndiaDied17 September 1948 (aged 64)Gujranwala, Punjab, PakistanOccupation(s)Muslim Missionary, Religious ScholarKnown forestablishing Ahmadiyya Islam in West Africa Al-Hajj Abdul Rahim Nayyar (December 1883 – September 17, 1948) was a companion of Mirza Ghulam Ahmad and a missionary of the Ahmadiyya Islamic movement in West Africa. He pledged allegiance to Ghulam Ahmad, formally joining the Ahmadiyya movement, in 1901.[...

Jean d'ArrasBiographieDécès MonsActivité ÉcrivainPériode d'activité XIVe siècleAutres informationsA travaillé pour Universités de Douaimodifier - modifier le code - modifier Wikidata Jean d’Arras (actif à la fin du XIVe siècle) est un écrivain français de la fin du XIVe siècle, auteur de la première version écrite, un roman en prose, de la légende de la fée Mélusine, fondatrice de la famille des Lusignan. Cet auteur reste mal connu : il est de l’entourage...

 

Renang pada Olimpiade Musim Panas 1956LokasiMelbourne Sports and Entertainment CentreMelbourneTanggal29 November – 7 Desember 1956Jumlah disiplin13Peserta235 dari 33 negara← 19521960 → Renang pada Olimpiade Musim Panas 1956 adalah pelaksanaan cabang olahraga renang pada penyelenggaraan Olimpiade Musim Panas 1956. Kompetisi pada cabang olahraga ini berlangsung di Melbourne Sports and Entertainment Centre, Melbourne. Edisi ini menandingkan 13 nomor. 235 at...

 

For other people named John Meagher, see John Meagher (disambiguation). John William MeagherBorn(1917-12-05)December 5, 1917Jersey City, New Jersey, USDiedApril 14, 1996(1996-04-14) (aged 78)Place of burialArlington National CemeteryAllegianceUnited States of AmericaService/branchUnited States ArmyRankTechnical SergeantUnit2nd Battalion, 305th Infantry Regiment, 77th Infantry DivisionBattles/warsWorld War II Battle of Okinawa AwardsMedal of Honor John William Meagher (December 5, 1917 &#...

جزء من سلسلة مقالات حولحقوق الشباب أنشطة Bailey v. Drexel Furniture Co. Child Labor Deterrence Act قانون حماية خصوصية الأطفال على الإنترنت اتفاقية حقوق الطفل قانون معايير العمل العادل لعام 1938 Hammer v. Dagenhart History of youth rights in the United States Morse v. Frederick Newsboys' strike of 1899 Quebec Charter of Human Rights and Freedoms Wild in the Streets نظريات/مفا...

 

2009 studio album by Neon IndianPsychic ChasmsStudio album by Neon IndianReleasedOctober 13, 2009 (2009-10-13)Recorded2009Genre Chillwave[1] pop[2] indie pop[3] electropop[4] Length30:46LabelLefseProducerAlan PalomoNeon Indian chronology Psychic Chasms(2009) The Flaming Lips with Neon Indian(2011) Professional ratingsAggregate scoresSourceRatingMetacritic81/100[5]Review scoresSourceRatingAllMusic[3]The A.V. ClubA[6]...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!