Infinity is something which is boundless, endless, or larger than any natural number. It is often denoted by the infinity symbol.
From the time of the ancient Greeks, the philosophical nature of infinity has been the subject of many discussions among philosophers. In the 17th century, with the introduction of the infinity symbol[1] and the infinitesimal calculus, mathematicians began to work with infinite series and what some mathematicians (including l'Hôpital and Bernoulli)[2] regarded as infinitely small quantities, but infinity continued to be associated with endless processes. As mathematicians struggled with the foundation of calculus, it remained unclear whether infinity could be considered as a number or magnitude and, if so, how this could be done.[1] At the end of the 19th century, Georg Cantor enlarged the mathematical study of infinity by studying infinite sets and infinite numbers, showing that they can be of various sizes.[1][3] For example, if a line is viewed as the set of all of its points, their infinite number (i.e., the cardinality of the line) is larger than the number of integers.[4] In this usage, infinity is a mathematical concept, and infinite mathematical objects can be studied, manipulated, and used just like any other mathematical object.
The mathematical concept of infinity refines and extends the old philosophical concept, in particular by introducing infinitely many different sizes of infinite sets. Among the axioms of Zermelo–Fraenkel set theory, on which most of modern mathematics can be developed, is the axiom of infinity, which guarantees the existence of infinite sets.[1] The mathematical concept of infinity and the manipulation of infinite sets are widely used in mathematics, even in areas such as combinatorics that may seem to have nothing to do with them. For example, Wiles's proof of Fermat's Last Theorem implicitly relies on the existence of Grothendieck universes, very large infinite sets,[5] for solving a long-standing problem that is stated in terms of elementary arithmetic.
Ancient cultures had various ideas about the nature of infinity. The ancient Indians and the Greeks did not define infinity in precise formalism as does modern mathematics, and instead approached infinity as a philosophical concept.
Early Greek
The earliest recorded idea of infinity in Greece may be that of Anaximander (c. 610 – c. 546 BC) a pre-Socratic Greek philosopher. He used the word apeiron, which means "unbounded", "indefinite", and perhaps can be translated as "infinite".[1][6]
Aristotle (350 BC) distinguished potential infinity from actual infinity, which he regarded as impossible due to the various paradoxes it seemed to produce.[7] It has been argued that, in line with this view, the Hellenistic Greeks had a "horror of the infinite"[8][9] which would, for example, explain why Euclid (c. 300 BC) did not say that there are an infinity of primes but rather "Prime numbers are more than any assigned multitude of prime numbers."[10] It has also been maintained, that, in proving the infinitude of the prime numbers, Euclid "was the first to overcome the horror of the infinite".[11] There is a similar controversy concerning Euclid's parallel postulate, sometimes translated:
If a straight line falling across two [other] straight lines makes internal angles on the same side [of itself whose sum is] less than two right angles, then the two [other] straight lines, being produced to infinity, meet on that side [of the original straight line] that the [sum of the internal angles] is less than two right angles.[12]
Other translators, however, prefer the translation "the two straight lines, if produced indefinitely ...",[13] thus avoiding the implication that Euclid was comfortable with the notion of infinity. Finally, it has been maintained that a reflection on infinity, far from eliciting a "horror of the infinite", underlay all of early Greek philosophy and that Aristotle's "potential infinity" is an aberration from the general trend of this period.[14]
Zeno of Elea (c. 495 – c. 430 BC) did not advance any views concerning the infinite. Nevertheless, his paradoxes,[15] especially "Achilles and the Tortoise", were important contributions in that they made clear the inadequacy of popular conceptions. The paradoxes were described by Bertrand Russell as "immeasurably subtle and profound".[16]
Achilles races a tortoise, giving the latter a head start.
Step #1: Achilles runs to the tortoise's starting point while the tortoise walks forward.
Step #2: Achilles advances to where the tortoise was at the end of Step #1 while the tortoise goes yet further.
Step #3: Achilles advances to where the tortoise was at the end of Step #2 while the tortoise goes yet further.
Step #4: Achilles advances to where the tortoise was at the end of Step #3 while the tortoise goes yet further.
Etc.
Apparently, Achilles never overtakes the tortoise, since however many steps he completes, the tortoise remains ahead of him.
Zeno was not attempting to make a point about infinity. As a member of the Eleatics school which regarded motion as an illusion, he saw it as a mistake to suppose that Achilles could run at all. Subsequent thinkers, finding this solution unacceptable, struggled for over two millennia to find other weaknesses in the argument.
Finally, in 1821, Augustin-Louis Cauchy provided both a satisfactory definition of a limit and a proof that, for 0 < x < 1,[17]
Suppose that Achilles is running at 10 meters per second, the tortoise is walking at 0.1 meters per second, and the latter has a 100-meter head start. The duration of the chase fits Cauchy's pattern with a = 10 seconds and x = 0.01. Achilles does overtake the tortoise; it takes him
Early Indian
The Jain mathematical text Surya Prajnapti (c. 4th–3rd century BCE) classifies all numbers into three sets: enumerable, innumerable, and infinite. Each of these was further subdivided into three orders:[18]
Enumerable: lowest, intermediate, and highest
Innumerable: nearly innumerable, truly innumerable, and innumerably innumerable
In the 17th century, European mathematicians started using infinite numbers and infinite expressions in a systematic fashion. In 1655, John Wallis first used the notation for such a number in his De sectionibus conicis,[19] and exploited it in area calculations by dividing the region into infinitesimal strips of width on the order of [20] But in Arithmetica infinitorum (1656),[21] he indicates infinite series, infinite products and infinite continued fractions by writing down a few terms or factors and then appending "&c.", as in "1, 6, 12, 18, 24, &c."[22]
The infinity symbol (sometimes called the lemniscate) is a mathematical symbol representing the concept of infinity. The symbol is encoded in Unicode at U+221E∞INFINITY (∞)[25] and in LaTeX as \infty.[26]
It was introduced in 1655 by John Wallis,[27][28] and since its introduction, it has also been used outside mathematics in modern mysticism[29] and literary symbology.[30]
Calculus
Gottfried Leibniz, one of the co-inventors of infinitesimal calculus, speculated widely about infinite numbers and their use in mathematics. To Leibniz, both infinitesimals and infinite quantities were ideal entities, not of the same nature as appreciable quantities, but enjoying the same properties in accordance with the Law of continuity.[31][2]
Real analysis
In real analysis, the symbol , called "infinity", is used to denote an unbounded limit.[32] The notation means that increases without bound, and means that decreases without bound. For example, if for every , then[33]
means that does not bound a finite area from to
means that the area under is infinite.
means that the total area under is finite, and is equal to
Infinity can also be used to describe infinite series, as follows:
means that the sum of the infinite series converges to some real value
means that the sum of the infinite series properly diverges to infinity, in the sense that the partial sums increase without bound.[34]
In complex analysis the symbol , called "infinity", denotes an unsigned infinite limit. The expression means that the magnitude of grows beyond any assigned value. A point labeled can be added to the complex plane as a topological space giving the one-point compactification of the complex plane. When this is done, the resulting space is a one-dimensional complex manifold, or Riemann surface, called the extended complex plane or the Riemann sphere.[38] Arithmetic operations similar to those given above for the extended real numbers can also be defined, though there is no distinction in the signs (which leads to the one exception that infinity cannot be added to itself). On the other hand, this kind of infinity enables division by zero, namely for any nonzero complex number. In this context, it is often useful to consider meromorphic functions as maps into the Riemann sphere taking the value of at the poles. The domain of a complex-valued function may be extended to include the point at infinity as well. One important example of such functions is the group of Möbius transformations (see Möbius transformation § Overview).
Nonstandard analysis
The original formulation of infinitesimal calculus by Isaac Newton and Gottfried Leibniz used infinitesimal quantities. In the second half of the 20th century, it was shown that this treatment could be put on a rigorous footing through various logical systems, including smooth infinitesimal analysis and nonstandard analysis. In the latter, infinitesimals are invertible, and their inverses are infinite numbers. The infinities in this sense are part of a hyperreal field; there is no equivalence between them as with the Cantorian transfinites. For example, if H is an infinite number in this sense, then H + H = 2H and H + 1 are distinct infinite numbers. This approach to non-standard calculus is fully developed in Keisler (1986).
A different form of "infinity" is the ordinal and cardinal infinities of set theory—a system of transfinite numbers first developed by Georg Cantor. In this system, the first transfinite cardinal is aleph-null (ℵ0), the cardinality of the set of natural numbers. This modern mathematical conception of the quantitative infinite developed in the late 19th century from works by Cantor, Gottlob Frege, Richard Dedekind and others—using the idea of collections or sets.[1]
Dedekind's approach was essentially to adopt the idea of one-to-one correspondence as a standard for comparing the size of sets, and to reject the view of Galileo (derived from Euclid) that the whole cannot be the same size as the part. (However, see Galileo's paradox where Galileo concludes that positive integers cannot be compared to the subset of positive square integers since both are infinite sets.) An infinite set can simply be defined as one having the same size as at least one of its proper parts; this notion of infinity is called Dedekind infinite. The diagram to the right gives an example: viewing lines as infinite sets of points, the left half of the lower blue line can be mapped in a one-to-one manner (green correspondences) to the higher blue line, and, in turn, to the whole lower blue line (red correspondences); therefore the whole lower blue line and its left half have the same cardinality, i.e. "size".[39]
Cantor defined two kinds of infinite numbers: ordinal numbers and cardinal numbers. Ordinal numbers characterize well-ordered sets, or counting carried on to any stopping point, including points after an infinite number have already been counted. Generalizing finite and (ordinary) infinite sequences which are maps from the positive integers leads to mappings from ordinal numbers to transfinite sequences. Cardinal numbers define the size of sets, meaning how many members they contain, and can be standardized by choosing the first ordinal number of a certain size to represent the cardinal number of that size. The smallest ordinal infinity is that of the positive integers, and any set which has the cardinality of the integers is countably infinite. If a set is too large to be put in one-to-one correspondence with the positive integers, it is called uncountable. Cantor's views prevailed and modern mathematics accepts actual infinity as part of a consistent and coherent theory.[40] Certain extended number systems, such as the hyperreal numbers, incorporate the ordinary (finite) numbers and infinite numbers of different sizes.[41]
One of Cantor's most important results was that the cardinality of the continuum is greater than that of the natural numbers ; that is, there are more real numbers R than natural numbers N. Namely, Cantor showed that .[42]
The continuum hypothesis states that there is no cardinal number between the cardinality of the reals and the cardinality of the natural numbers, that is, .
The first of these results is apparent by considering, for instance, the tangent function, which provides a one-to-one correspondence between the interval (−π/2, π/2) andR.
The second result was proved by Cantor in 1878, but only became intuitively apparent in 1890, when Giuseppe Peano introduced the space-filling curves, curved lines that twist and turn enough to fill the whole of any square, or cube, or hypercube, or finite-dimensional space. These curves can be used to define a one-to-one correspondence between the points on one side of a square and the points in the square.[45]
Geometry
Until the end of the 19th century, infinity was rarely discussed in geometry, except in the context of processes that could be continued without any limit. For example, a line was what is now called a line segment, with the proviso that one can extend it as far as one wants; but extending it infinitely was out of the question. Similarly, a line was usually not considered to be composed of infinitely many points but was a location where a point may be placed. Even if there are infinitely many possible positions, only a finite number of points could be placed on a line. A witness of this is the expression "the locus of a point that satisfies some property" (singular), where modern mathematicians would generally say "the set of the points that have the property" (plural).
One of the rare exceptions of a mathematical concept involving actual infinity was projective geometry, where points at infinity are added to the Euclidean space for modeling the perspective effect that shows parallel lines intersecting "at infinity". Mathematically, points at infinity have the advantage of allowing one to not consider some special cases. For example, in a projective plane, two distinct lines intersect in exactly one point, whereas without points at infinity, there are no intersection points for parallel lines. So, parallel and non-parallel lines must be studied separately in classical geometry, while they need not be distinguished in projective geometry.
Before the use of set theory for the foundation of mathematics, points and lines were viewed as distinct entities, and a point could be located on a line. With the universal use of set theory in mathematics, the point of view has dramatically changed: a line is now considered as the set of its points, and one says that a point belongs to a line instead of is located on a line (however, the latter phrase is still used).
In particular, in modern mathematics, lines are infinite sets.
Infinite dimension
The vector spaces that occur in classical geometry have always a finite dimension, generally two or three. However, this is not implied by the abstract definition of a vector space, and vector spaces of infinite dimension can be considered. This is typically the case in functional analysis where function spaces are generally vector spaces of infinite dimension.
The structure of a fractal object is reiterated in its magnifications. Fractals can be magnified indefinitely without losing their structure and becoming "smooth"; they have infinite perimeters and can have infinite or finite areas. One such fractal curve with an infinite perimeter and finite area is the Koch snowflake.[46]
Mathematics without infinity
Leopold Kronecker was skeptical of the notion of infinity and how his fellow mathematicians were using it in the 1870s and 1880s. This skepticism was developed in the philosophy of mathematics called finitism, an extreme form of mathematical philosophy in the general philosophical and mathematical schools of constructivism and intuitionism.[47]
Physics
In physics, approximations of real numbers are used for continuous measurements and natural numbers are used for discrete measurements (i.e., counting). Concepts of infinite things such as an infinite plane wave exist, but there are no experimental means to generate them.[48]
Cosmology
The first published proposal that the universe is infinite came from Thomas Digges in 1576.[49] Eight years later, in 1584, the Italian philosopher and astronomer Giordano Bruno proposed an unbounded universe in On the Infinite Universe and Worlds: "Innumerable suns exist; innumerable earths revolve around these suns in a manner similar to the way the seven planets revolve around our sun. Living beings inhabit these worlds."[50]
Cosmologists have long sought to discover whether infinity exists in our physical universe: Are there an infinite number of stars? Does the universe have infinite volume? Does space "go on forever"? This is still an open question of cosmology. The question of being infinite is logically separate from the question of having boundaries. The two-dimensional surface of the Earth, for example, is finite, yet has no edge. By travelling in a straight line with respect to the Earth's curvature, one will eventually return to the exact spot one started from. The universe, at least in principle, might have a similar topology. If so, one might eventually return to one's starting point after travelling in a straight line through the universe for long enough.[51]
The curvature of the universe can be measured through multipole moments in the spectrum of the cosmic background radiation. To date, analysis of the radiation patterns recorded by the WMAP spacecraft hints that the universe has a flat topology. This would be consistent with an infinite physical universe.[52][53][54]
However, the universe could be finite, even if its curvature is flat. An easy way to understand this is to consider two-dimensional examples, such as video games where items that leave one edge of the screen reappear on the other. The topology of such games is toroidal and the geometry is flat. Many possible bounded, flat possibilities also exist for three-dimensional space.[55]
The concept of infinity also extends to the multiverse hypothesis, which, when explained by astrophysicists such as Michio Kaku, posits that there are an infinite number and variety of universes.[56] Also, cyclic models posit an infinite amount of Big Bangs, resulting in an infinite variety of universes after each Big Bang event in an infinite cycle.[57]
Logic
In logic, an infinite regress argument is "a distinctively philosophical kind of argument purporting to show that a thesis is defective because it generates an infinite series when either (form A) no such series exists or (form B) were it to exist, the thesis would lack the role (e.g., of justification) that it is supposed to play."[58]
In languages that do not have greatest and least elements but do allow overloading of relational operators, it is possible for a programmer to create the greatest and least elements. In languages that do not provide explicit access to such values from the initial state of the program but do implement the floating-point data type, the infinity values may still be accessible and usable as the result of certain operations.[citation needed]
In programming, an infinite loop is a loop whose exit condition is never satisfied, thus executing indefinitely.
Arts, games, and cognitive sciences
Perspective artwork uses the concept of vanishing points, roughly corresponding to mathematical points at infinity, located at an infinite distance from the observer. This allows artists to create paintings that realistically render space, distances, and forms.[62] Artist M.C. Escher is specifically known for employing the concept of infinity in his work in this and other ways.[63]
Cognitive scientistGeorge Lakoff considers the concept of infinity in mathematics and the sciences as a metaphor. This perspective is based on the basic metaphor of infinity (BMI), defined as the ever-increasing sequence <1,2, 3,...>.[66]
^Aristotle. Physics. Translated by Hardie, R. P.; Gaye, R. K. The Internet Classics Archive. Book 3, Chapters 5–8.
^Goodman, Nicolas D. (1981). "Reflections on Bishop's philosophy of mathematics". In Richman, F. (ed.). Constructive Mathematics. Lecture Notes in Mathematics. Vol. 873. Springer. pp. 135–145. doi:10.1007/BFb0090732. ISBN978-3-540-10850-4.
^Drozdek, Adam (2008). In the Beginning Was the Apeiron: Infinity in Greek Philosophy. Stuttgart, Germany: Franz Steiner Verlag. ISBN978-3-515-09258-6.
^"Zeno's Paradoxes". Stanford University. October 15, 2010. Retrieved April 3, 2017.
^Beutelspacher, Albrecht; Rosenbaum, Ute (1998), Projective Geometry / from foundations to applications, Cambridge University Press, p. 27, ISBN978-0-521-48364-3
^John Gribbin (2009), In Search of the Multiverse: Parallel Worlds, Hidden Dimensions, and the Ultimate Quest for the Frontiers of Reality, ISBN978-0-470-61352-8. p. 88
^Gosling, James; et al. (27 July 2012). "4.2.3.". The Java Language Specification (Java SE 7 ed.). California: Oracle America, Inc. Archived from the original on 9 June 2012. Retrieved 6 September 2012.
^
Stokes, Roger (July 2012). "19.2.1". Learning J. Archived from the original on 25 March 2012. Retrieved 6 September 2012.
^"Infinite Chess, PBS Infinite Series"Archived 2017-04-07 at the Wayback Machine PBS Infinite Series, with academic sources by J. Hamkins (infinite chess: Evans, C.D.A; Joel David Hamkins (2013). "Transfinite game values in infinite chess". arXiv:1302.4377 [math.LO]. and Evans, C.D.A; Joel David Hamkins; Norman Lewis Perlmutter (2015). "A position in infinite chess with game value $ω^4$". arXiv:1510.08155 [math.LO].).
Aczel, Amir D. (2001). The Mystery of the Aleph: Mathematics, the Kabbalah, and the Search for Infinity. New York: Pocket Books. ISBN978-0-7434-2299-4.
H. Jerome Keisler: Elementary Calculus: An Approach Using Infinitesimals. First edition 1976; 2nd edition 1986. This book is now out of print. The publisher has reverted the copyright to the author, who has made available the 2nd edition in .pdf format available for downloading at http://www.math.wisc.edu/~keisler/calc.html
Infinite ReflectionsArchived 2009-11-05 at the Wayback Machine, by Peter Suber. How Cantor's mathematics of the infinite solves a handful of ancient philosophical problems of the infinite. From the St. John's Review, XLIV, 2 (1998) 1–59.
بلوتوسمعلومات عامةالجنس ذكر الاسم باللُّغة الأَصل Πλούτος (باليونانية) الأب Iasion (en) الأم دِيمِتَر يعبده ميثولوجيا إغريقية نطاق القديس أو الإله ثروة تعديل - تعديل مصدري - تعديل ويكي بيانات بلوتوس (باليونانية: Πλοῦτος) (بالعربية:ثروة) في الأساطير اليونانية هو إله الثروة، كا...
Koordinat: 7°33′43″S 110°50′21″E / 7.56194°S 110.83917°E / -7.56194; 110.83917 Stasiun Solo Jebres Y12 Stasiun Solo JebresNama lainStasiun JebresLokasiJalan Ledoksari Utara No. 1Purwodiningratan, Jebres, Surakarta, Jawa Tengah 57128IndonesiaKetinggian+97 mOperatorKereta Api IndonesiaDaerah Operasi VI Yogyakarta KAI CommuterLetak dari pangkal km 260+634 lintas Surabaya Kota–Kertosono–Madiun–Solo Balapan km 110+000 lintas Semarang Tawang–Brumbung–Gu...
Windows Defender Windows Defender у Windows 7Розробник MicrosoftРодина ОС Windows 2000, Windows XP, Windows Server 2003, Windows Vista, Windows 7Останній випуск 6.1.7600.16385 / 22 липня 2009; 14 років тому (2009-07-22)Ліцензія Microsoft EULA. Домашня сторінка Windows Defender (Захисник Windows), раніше відомий як Microsoft Antispyware — програмний продукт ко...
Adela de Normandía Condesa de Blois, Chartres y Meaux Ejercicio 1089 - 19 de mayo de 1102Información personalNacimiento c. 1067Ducado de Normandía, FranciaFallecimiento 3 de marzo de 1137Marcigny, FranciaFamiliaCasa real Casa de NormandíaPadre Guillermo I de InglaterraMadre Matilde de FlandesCónyuge Esteban II de BloisHijos Guillermo de Sully Teobaldo II de Champaña Lucia-Mahaut Esteban de Inglaterra Firma [editar datos en Wikidata] Adela de Normandía (1063-1137) fue una nobl...
اضغط هنا للاطلاع على كيفية قراءة التصنيف سيلفر شارك حالة الحفظ أنواع مهددة بالانقراض (خطر انقراض متوسط) المرتبة التصنيفية نوع التصنيف العلمي فوق النطاق حيويات مملكة عليا حقيقيات النوى مملكة حيوان عويلم ثنائيات التناظر مملكة فرعية ثانويات الفم شعبة&...
StarterPublication informationPublisherDupuisFormatBande DessinéeGenreFranco-BelgePublication date1952Main character(s)StarterPipetteCreative teamCreated byAndré FranquinJidéhemWritten byJidéhemArtist(s)Jidéhem Starter is a Franco-Belgian comics series created by André Franquin (drawings) and Jidéhem (drawings and scripts) in Spirou. History It originated in from a similarly titled periodical column about automobiles, written by Jacques Wauters in Spirou from 1952 on.[1] In 195...
American college football season 2023 South Carolina Gamecocks footballConferenceSoutheastern ConferenceDivisionEast DivisionRecord5–7 (3–5 SEC)Head coachShane Beamer (3rd season)Offensive coordinatorDowell Loggains (1st season)Defensive coordinatorClayton White (3rd season)Home stadiumWilliams–Brice Stadium(capacity: 77,559)UniformSeasons← 20222024 → 2023 Southeastern Conference football standings vte Conf Overall Team W L ...
Artikel ini perlu diwikifikasi agar memenuhi standar kualitas Wikipedia. Anda dapat memberikan bantuan berupa penambahan pranala dalam, atau dengan merapikan tata letak dari artikel ini. Untuk keterangan lebih lanjut, klik [tampil] di bagian kanan. Mengganti markah HTML dengan markah wiki bila dimungkinkan. Tambahkan pranala wiki. Bila dirasa perlu, buatlah pautan ke artikel wiki lainnya dengan cara menambahkan [[ dan ]] pada kata yang bersangkutan (lihat WP:LINK untuk keterangan lebih lanjut...
Television channel Maha Cartoon TVMaha Cartoon TV logoCountryIndiaBroadcast areaIndiaNetworkMaha TVAffiliatesMaha MovieHeadquartersNew Delhi, IndiaProgrammingLanguage(s)HindiPicture format4:3 (576i, SDTV)OwnershipOwnerTeleone Consumers Product Private LtdHistoryLaunched1 November 2016; 7 years ago (2016-11-01)Closed1 March 2019Replaced byMaha Punjabi Maha Cartoon TV was a cable and satellite television channel that is owned by Teleone Consumers Product Pvt. Ltd. It was found...
Alternate history and military history novel series For television series by Belisarius Productions, see Donald P. Bellisario. An editor has performed a search and found that sufficient sources exist to establish the subject's notability. These sources can be used to expand the article and may be described in edit summaries or found on the talk page. The article may include original research, or omit significant information about the subject. Please help improve this article by adding citatio...
This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article only references primary sources. Please help improve this article by adding secondary or tertiary sources.Find sources: Belinda Rice novel – news · newspapers · books · scholar · JSTOR (February 2020) (Learn how and when to remove this template message) This article relies largely or...
هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أبريل 2019) ديك ريفرز ريفرز سنة 2012 معلومات شخصية اسم الولادة (بالفرنسية: Hervé Émile Forneri) الميلاد 24 أبريل 1945 نيس[1] الوفاة 24 أبريل 2019 (74 سنة) [2][3...
Island in County Kerry, Ireland See also: Fenit Fenit IslandCastle on Fenit WithinFenit IslandGeographyLocationTralee BayCoordinates52°17′N 9°52′W / 52.283°N 9.867°W / 52.283; -9.867AdministrationIrelandProvinceMunsterCountyKerry Fenit Island is a populated island, on the coast of County Kerry, connected to the mainland by a sandbar. Located in Tralee Bay, the island encloses Barrow Harbour.[1] Historically, the area was called 'Fenit Within'. It is adj...
This article is about the Antarctic station. For other uses, see Marambio (disambiguation). Antarctic StationMarambio Station Estación MarambioAntarctic StationAirfield control tower at MarambioNickname: Spanish: Puerta de Entrada a la Antártida (Antarctica's Entrance Door)Marambio StationLocation within AntarcticaCoordinates: 64°14′28″S 56°37′36″W / 64.241014°S 56.626753°W / -64.241014; -56.626753Country ArgentinaProvinceTierra del Fuego, Antar...
American self-storage listings company SpareFootFounded2008[1]FounderChuck Gordon & Mario FeghaliHeadquartersAustin, Texas, USAKey peopleChuck Gordon, CEO[2]Mario Feghali, COO[2]Number of employees160[3]Websitewww.sparefoot.com SpareFoot is an Austin-based company that provides listings for self-storage units. The company was originally a person-to-person model, similar to Airbnb, that later developed into a marketplace for self-storage. The company now fac...
Just Cause 4 Разработчик Avalanche Studios Издатель Square Enix Локализатор Бука Часть серии Just Cause Дата анонса 11 июня 2018 года Дата выпуска 4 декабря 2018 года Жанры action-adventure Технические данные Платформы WindowsPlayStation 4Xbox One Движок Apex Режим игры однопользовательский Язык английский Носители опти...
Muhammad Tito KarnavianMenteri Dalam Negeri Indonesia ke-29PetahanaMulai menjabat 23 Oktober 2019PresidenJoko WidodoWakilJohn Wempi WetipoPendahuluTjahjo Kumolo Jabatan Kepolisian Kepala Kepolisian Negara Republik Indonesia ke-23Masa jabatan13 Juli 2016 – 22 Oktober 2019PresidenJoko WidodoPendahuluBadrodin HaitiPenggantiAri Dono Sukmanto (Plt.)Idham AzisKepala Badan Nasional Penanggulangan Terorisme ke-3Masa jabatan16 Maret 2016 – 12 Juli 2016PendahuluSau...
Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!