Lemniscate

The lemniscate of Bernoulli and its two foci

In algebraic geometry, a lemniscate (/lɛmˈnɪskɪt/ or /ˈlɛmnɪsˌkt, -kɪt/)[1] is any of several figure-eight or -shaped curves.[2][3] The word comes from the Latin lēmniscātus, meaning "decorated with ribbons",[4] from the Greek λημνίσκος (lēmnískos), meaning "ribbon",[3][5][6][7] or which alternatively may refer to the wool from which the ribbons were made.[2]

Curves that have been called a lemniscate include three quartic plane curves: the hippopede or lemniscate of Booth, the lemniscate of Bernoulli, and the lemniscate of Gerono. The hippopede was studied by Proclus (5th century), but the term "lemniscate" was not used until the work of Jacob Bernoulli in the late 17th century.

History and examples

Lemniscate of Booth

Lemniscate of Booth

The consideration of curves with a figure-eight shape can be traced back to Proclus, a Greek Neoplatonist philosopher and mathematician who lived in the 5th century AD. Proclus considered the cross-sections of a torus by a plane parallel to the axis of the torus. As he observed, for most such sections the cross section consists of either one or two ovals; however, when the plane is tangent to the inner surface of the torus, the cross-section takes on a figure-eight shape, which Proclus called a horse fetter (a device for holding two feet of a horse together), or "hippopede" in Greek.[8] The name "lemniscate of Booth" for this curve dates to its study by the 19th-century mathematician James Booth.[2]

The lemniscate may be defined as an algebraic curve, the zero set of the quartic polynomial when the parameter d is negative (or zero for the special case where the lemniscate becomes a pair of externally tangent circles). For positive values of d one instead obtains the oval of Booth.

Lemniscate of Bernoulli

Lemniscate of Bernoulli

In 1680, Cassini studied a family of curves, now called the Cassini oval, defined as follows: the locus of all points, the product of whose distances from two fixed points, the curves' foci, is a constant. Under very particular circumstances (when the half-distance between the points is equal to the square root of the constant) this gives rise to a lemniscate.

In 1694, Johann Bernoulli studied the lemniscate case of the Cassini oval, now known as the lemniscate of Bernoulli (shown above), in connection with a problem of "isochrones" that had been posed earlier by Leibniz. Like the hippopede, it is an algebraic curve, the zero set of the polynomial . Bernoulli's brother Jacob Bernoulli also studied the same curve in the same year, and gave it its name, the lemniscate.[9] It may also be defined geometrically as the locus of points whose product of distances from two foci equals the square of half the interfocal distance.[10] It is a special case of the hippopede (lemniscate of Booth), with , and may be formed as a cross-section of a torus whose inner hole and circular cross-sections have the same diameter as each other.[2] The lemniscatic elliptic functions are analogues of trigonometric functions for the lemniscate of Bernoulli, and the lemniscate constants arise in evaluating the arc length of this lemniscate.

Lemniscate of Gerono

Lemniscate of Gerono: solution set of x4x2 + y2 = 0[11]

Another lemniscate, the lemniscate of Gerono or lemniscate of Huygens, is the zero set of the quartic polynomial .[12][13] Viviani's curve, a three-dimensional curve formed by intersecting a sphere with a cylinder, also has a figure eight shape, and has the lemniscate of Gerono as its planar projection.[14]

Others

Other figure-eight shaped algebraic curves include

  • The Devil's curve, a curve defined by the quartic equation in which one connected component has a figure-eight shape,[15]
  • Watt's curve, a figure-eight shaped curve formed by a mechanical linkage. Watt's curve is the zero set of the degree-six polynomial equation and has the lemniscate of Bernoulli as a special case.

See also

References

  1. ^ "lemniscate". Dictionary.com Unabridged (Online). n.d.
  2. ^ a b c d Schappacher, Norbert (1997), "Some milestones of lemniscatomy", Algebraic Geometry (Ankara, 1995), Lecture Notes in Pure and Applied Mathematics, vol. 193, New York: Dekker, pp. 257–290, MR 1483331.
  3. ^ a b Erickson, Martin J. (2011), "1.1 Lemniscate", Beautiful Mathematics, MAA Spectrum, Mathematical Association of America, pp. 1–3, ISBN 9780883855768.
  4. ^ lemniscatus. Charlton T. Lewis and Charles Short. A Latin Dictionary on Perseus Project.
  5. ^ Harper, Douglas. "lemniscus". Online Etymology Dictionary.
  6. ^ lemniscus. Charlton T. Lewis and Charles Short. A Latin Dictionary on Perseus Project.
  7. ^ λημνίσκος. Liddell, Henry George; Scott, Robert; A Greek–English Lexicon at the Perseus Project.
  8. ^ ἱπποπέδη in Liddell and Scott.
  9. ^ Bos, H. J. M. (1974), "The lemniscate of Bernoulli", For Dirk Struik, Boston Stud. Philos. Sci., XV, Dordrecht: Reidel, pp. 3–14, ISBN 9789027703934, MR 0774250.
  10. ^ Langer, Joel C.; Singer, David A. (2010), "Reflections on the lemniscate of Bernoulli: the forty-eight faces of a mathematical gem", Milan Journal of Mathematics, 78 (2): 643–682, doi:10.1007/s00032-010-0124-5, MR 2781856, S2CID 1448521.
  11. ^ Köller, Jürgen. "Acht-Kurve". www.mathematische-basteleien.de. Retrieved 2017-11-26.
  12. ^ Basset, Alfred Barnard (1901), "The Lemniscate of Gerono", An elementary treatise on cubic and quartic curves, Deighton, Bell, pp. 171–172.
  13. ^ Chandrasekhar, S (2003), Newton's Principia for the common reader, Oxford University Press, p. 133, ISBN 9780198526759.
  14. ^ Costa, Luisa Rossi; Marchetti, Elena (2005), "Mathematical and Historical Investigation on Domes and Vaults", in Weber, Ralf; Amann, Matthias Albrecht (eds.), Aesthetics and architectural composition : proceedings of the Dresden International Symposium of Architecture 2004, Mammendorf: Pro Literatur, pp. 73–80.
  15. ^ Darling, David (2004), "devil's curve", The Universal Book of Mathematics: From Abracadabra to Zeno's Paradoxes, John Wiley & Sons, pp. 91–92, ISBN 9780471667001.

Read other articles:

American baseball player Baseball player Jeremy AccardoAccardo with the Cleveland IndiansPitcherBorn: (1981-12-08) December 8, 1981 (age 41)Phoenix, Arizona, U.S.Batted: RightThrew: RightMLB debutMay 4, 2005, for the San Francisco GiantsLast MLB appearanceSeptember 27, 2012, for the Oakland AthleticsMLB statisticsWin–loss record10–20Earned run average4.30Strikeouts205 Teams San Francisco Giants (2005–2006) Toronto Blue Jays (2006–2010) Baltimore Orio...

 

2010 video game2010 FIFA World Cup South AfricaNorth American cover artDeveloper(s)EA Canada (PS3, Xbox 360 & iOS)[3]HB Studios (Wii & PSP)Publisher(s)EA SportsSeriesFIFA World CupPlatform(s)PlayStation PortablePlayStation 3Xbox 360WiiiOSReleaseNA: 27 April 2010[1]AU: 29 April 2010[1]UK: 30 April 2010[1]iOSNZ: 29 April 2010[2]NA: 28 June 2010Genre(s)SportsMode(s)Single-player, Multiplayer 2010 FIFA World Cup South Africa is the official video ga...

 

Jamaican hurdler Roxroy CatoCato in 2015Personal informationBorn (1988-01-05) January 5, 1988 (age 35)Height1.83 m (6 ft 0 in)Weight77 kg (170 lb)SportCountry JamaicaSportAthleticsEvent(s)400m HurdlesCollege teamLincoln UniversitySt. Augustine's University Medal record Men's athletics Central American and Caribbean Games 2010 Mayagüez 4x400 m relay 2010 Mayagüez 400 m hurdles Pan American Games 2015 Toronto 400 m hurdles Roxroy Cato (born 5 January 1988, S...

American TV series or program Garfield in the RoughTitle cardCreated byJim DavisWritten byJim DavisDirected byPhil RomanStarringLorenzo MusicThom HugeGregg BergerGeorge WendtDesirée GoyetteHal SmithOrson BeanComposersEd Bogas and Desirée GoyetteDesirée Goyette, Lou Rawls, Lorenzo Music and Thom Huge (vocals)Country of originUnited StatesOriginal languageEnglishProductionExecutive producerJay PoynorProducerPhil RomanEditorSam HortaRunning time24 minutesProduction companiesFilm RomanUni...

 

Ein rechter Winkel Ein rechter Winkel, kurz auch Rechter, ist ein Winkel von 90° und damit der vierte Teil eines Vollwinkels zu 360°. Zwei Geraden oder Strecken, die sich in einem rechten Winkel schneiden oder berühren, werden als rechtwinklig, senkrecht oder orthogonal bezeichnet. Rechte Winkel treten in vielen geometrischen Figuren und Konstruktionen auf und werden in Zeichnungen durch einen kleinen Viertelkreis mit Punkt oder durch ein kleines Quadrat gekennzeichnet. Der rechte Winkel w...

 

Dieser Artikel oder nachfolgende Abschnitt ist nicht hinreichend mit Belegen (beispielsweise Einzelnachweisen) ausgestattet. Angaben ohne ausreichenden Beleg könnten demnächst entfernt werden. Bitte hilf Wikipedia, indem du die Angaben recherchierst und gute Belege einfügst. Karrees in Berlin-Mitte (Friedrichstraße) Der Ausdruck Karree (französisch carré ‚Quadrat‘) bezeichnet im Städtebau eine geschlossene rechteckige oder trapezförmige Anordnung von Gebäuden um einen gem...

العلاقات المغربية الموريتانية   موريتانيا   المغرب السفارات سفارة المغرب في موريتانيا   السفير : حميد شبار   العنوان : شارع الجينرال ديغول، نواكشوط سفارة موريتانيا في المغرب   السفير : محمد الأمين ولد آبي   العنوان : زنقة التهامي الم...

 

Pakho ChauPakho Chau pada 2013Lahir12 November 1984 (umur 39)Hong KongPekerjaanPenyanyi, penulis lagu, pemeran, modelTahun aktif2007–kiniTinggi182 cm (5 ft 11+1⁄2 in)Suami/istriStephanie Chu ​(m. 2016)​ Anak (1) Sonya ChauKarier musikGenreCantopop, Pop, RockInstrumenVokal, piano, gitarLabelWarner Music (2007–2017)The Voice Entertainment Group (2017–kini) Pakho Chau Hanzi tradisional: 周柏豪 Alih aksara Mandarin - Hanyu Pinyi...

 

La ley 15.848 de Caducidad de la Pretensión Punitiva del Estado (popularmente conocida como Ley de Caducidad y llamada peyorativamente Ley de Impunidad por sus detractores),[1]​[2]​[3]​[4]​ es una ley dictada en Uruguay en 1986 mediante la cual se estableció la caducidad del ejercicio de la pretensión punitiva del Estado respecto de los delitos cometidos hasta el 1º de marzo de 1985 por funcionarios militares y policiales, equiparados y asimilados por móviles pol...

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Boxen album – news · newspapers · books · scholar · JSTOR (May 2016) (Learn how and when to remove this template message...

 

Такер: Людина і його мріяангл. Tucker: The Man and His Dream Жанр біографічний драмаРежисер Френсіс Форд КопполаПродюсер Фред Фукс, Фред РусСценарист Арнольд Шульман Девід СейдлерУ головних ролях Джефф БріджесДжоан АлленМартін ЛандауФредерік Форрест Ніна Семашко Мако Іваматсу, Ді...

 

A (probably later imitation) MacMillan bicycle, probably made c.1860 An American Star Bicycle A treadle-driven tricycle A treadle-driven quadracycle A treadle bicycle is a bicycle powered by a treadle instead of the more common crank. Treadles were one of the mechanisms inventors tried in order to position the pedals away from the drive wheel hub before the development of the bicycle chain or instead of it. Treadles have also been used to drive tricycles and quadracycles. History Treadles wer...

Social movement Part of a series onAnarchism History Outline Schools of thought Feminist Green Primitivist Social ecology Total liberation Individualist Egoist Free-market Naturist Philosophical Mutualism Postcolonial African Black Queer Religious Christian Jewish Social Collectivist Parecon Communist Magonism Without adjectives Methodology Agorism Illegalism Insurrectionary Communization Expropriative Pacifist Platformism Especifismo Relationship Syndicalist Synthesis Theory Practice Anarchy...

 

Telephone numbers in State of PalestinePalestine show in (dark green) and dispute territory show in (light green)LocationCountryState of PalestineContinentAsiaRegulatorMinistry of Telecom and Information TechnologyMembershipPalestinian Ministry of Telecom and Information TechnologyTypeclosedNSN length8 or 9Access codesCountry code+970International access00Long-distance0 The country calling code +970 is reserved for telephone numbers in the State of Palestine. This code is mainly used when cal...

 

Para otros usos de este término, véase Seminario Conciliar de San Ildefonso (desambiguación). Seminario Conciliar de San IldefonsoTipo Seminario católicoFundación 1 de octubre de 1847Fundador Cardenal-Arzobispo Payá y Rico (Obispo de Toledo)LocalizaciónDirección Plaza de San Andrés, n.º 3, Toledo, EspañaEspaña EspañaAdministraciónRector José María Anaya HigueraSitio web seminariomayortoledo.com/[editar datos en Wikidata] El Seminario Conciliar de San Ildefo...

Die Liste der Bodendenkmale in Eisenhüttenstadt enthält alle Bodendenkmale der brandenburgischen Gemeinde Eisenhüttenstadt und ihrer Ortsteile auf der Grundlage der Landesdenkmalliste vom 31. Dezember 2020. Die Baudenkmale sind in der Liste der Baudenkmale in Eisenhüttenstadt aufgeführt. Gemarkung Flur Kurzbeschreibung Bodendenkmalnummer Bemerkung Bild Diehlo (Lage52.128914.5916) 1,2 Dorfkern deutsches Mittelalter, Dorfkern Neuzeit, Siedlung Urgeschichte, Siedlung slawisches Mittelalter ...

 

Dutch painter and printmaker Hendrik VoogdPortrait by Charles Howard Hodges (1764-1837), 1828Born(1768-07-10)10 July 1768Amsterdam, Dutch RepublicDied4 September 1839(1839-09-04) (aged 71)Rome, Papal StatesNationalityDutch Hendrik Voogd (Dutch pronunciation: [ˈɦɛndrɪk ˈfoːxt];[1] 10 July 1768 – 4 September 1839) was a Dutch painter and printmaker, who was active in Italy. Life Hendrik Voogd was born on 10 July 1768 in Amsterdam in the Dutch Republic.[2] Be...

 

Malay literary text A page of the Hikayat Abdullah written in Malay in the Jawi script, from the collection of the National Library of Singapore. A rare first edition, it was written between 1840 and 1843, printed by lithography, and published in 1849. Hikayat Abdullah (حكاية عبدالله) is a major literary work by Abdullah bin Abdul Kadir, a Malacca-born Munshi of Singapore. It was completed in 1845 and first published in 1849,[1] making it one of the first Malay literary te...

Species of true bug Maiestas vetus Head, pronotum, and scutellum Scientific classification Kingdom: Animalia Phylum: Arthropoda Class: Insecta Order: Hemiptera Family: Cicadellidae Subfamily: Deltocephalinae Tribe: Deltocephalini Genus: Maiestas Species: M. vetus Binomial name Maiestas vetus(Knight, 1975) Synonyms Deltocephalus vetus Recilia vetus Day & Fletcher, 1994 Maiestas vetus is a species of bug from the Cicadellidae family that is indigenous to Australia and New Zealand.[...

 

Dutch musical group This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: De Toppers – news · newspapers · books · scholar · JSTOR (September 2022) (Learn how and when to remove this template message) De ToppersJeroen van der Boom, René Froger and Gordon Heuckeroth in 2009Background informationAlso known asThe To...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!