The Kochsnowflake (also known as the Koch curve, Koch star, or Koch island[1][2]) is a fractal curve and one of the earliest fractals to have been described. It is based on the Koch curve, which appeared in a 1904 paper titled "On a Continuous Curve Without Tangents, Constructible from Elementary Geometry"[3] by the Swedish mathematician Helge von Koch.
The Koch snowflake can be built up iteratively, in a sequence of stages. The first stage is an equilateral triangle, and each successive stage is formed by adding outward bends to each side of the previous stage, making smaller equilateral triangles. The areas enclosed by the successive stages in the construction of the snowflake converge to times the area of the original triangle, while the perimeters of the successive stages increase without bound. Consequently, the snowflake encloses a finite area, but has an infinite perimeter.
The Koch snowflake has been constructed as an example of a continuous curve where drawing a tangent line to any point is impossible. Unlike the earlier Weierstrass function where the proof was purely analytical, the Koch snowflake was created to be possible to geometrically represent at the time, so that this property could also be seen through "naive intuition".[3]
Origin and history
There is no doubt that the snowflake curve is based on the von Koch curve and its iterative construction. However, the picture of the snowflake does not appear in either the original article published in 1904[3] nor in the extended 1906 memoir.[4] So one can ask who is the man who constructed the snowflake figure first. An investigation of this question suggests that the snowflake curve is due to the American mathematician Edward Kasner.[5][6]
Construction
The Koch snowflake can be constructed by starting with an equilateral triangle, then recursively altering each line segment as follows:
divide the line segment into three segments of equal length.
draw an equilateral triangle that has the middle segment from step 1 as its base and points outward.
remove the line segment that is the base of the triangle from step 2.
The first iteration of this process produces the outline of a hexagram.
The Koch snowflake is the limit approached as the above steps are followed indefinitely. The Koch curve originally described by Helge von Koch is constructed using only one of the three sides of the original triangle. In other words, three Koch curves make a Koch snowflake.
A Koch curve–based representation of a nominally flat surface can similarly be created by repeatedly segmenting each line in a sawtooth pattern of segments with a given angle.[7]
Properties
Perimeter of the Koch snowflake
Each iteration multiplies the number of sides in the Koch snowflake by four, so the number of sides after iterations is given by:
If the original equilateral triangle has sides of length , the length of each side of the snowflake after iterations is:
an inverse power of three multiple of the original length.
The perimeter of the snowflake after iterations is:
The Koch curve has an infinite length, because the total length of the curve increases by a factor of with each iteration. Each iteration creates four times as many line segments as in the previous iteration, with the length of each one being the length of the segments in the previous stage. Hence, the length of the curve after iterations will be times the original triangle perimeter and is unbounded, as tends to infinity.
Limit of perimeter
As the number of iterations tends to infinity, the limit of the perimeter is:
since .
An -dimensional measure exists, but has not been calculated so far. Only upper and lower bounds have been invented.[clarification needed][8]
Area of the Koch snowflake
In each iteration a new triangle is added on each side of the previous iteration, so the number of new triangles added in iteration is:
The area of each new triangle added in an iteration is of the area of each triangle added in the previous iteration, so the area of each triangle added in iteration is:
where is the area of the original triangle. The total new area added in iteration is therefore:
The total area of the snowflake after iterations is:
Collapsing the geometric sum gives:
Limits of area
The limit of the area is:
since .
Thus, the area of the Koch snowflake is of the area of the original triangle. Expressed in terms of the side length of the original triangle, this is:[9]
Solid of revolution
The volume of the solid of revolution of the Koch snowflake about an axis of symmetry of the initiating equilateral triangle of unit side is [10]
Other properties
The Koch snowflake is self-replicating with six smaller copies surrounding one larger copy at the center. Hence, it is an irrep-7 irrep-tile (see Rep-tile for discussion).
It is impossible to draw a tangent line to any point of the curve.
Representation as a de Rham curve
The Koch curve arises as a special case of a de Rham curve. The de Rham curves are mappings of Cantor space into the plane, usually arranged so as to form a continuous curve. Every point on a continuous de Rham curve corresponds to a real number in the unit interval. For the Koch curve, the tips of the snowflake correspond to the dyadic rationals: each tip can be uniquely labeled with a distinct dyadic rational.
Tessellation of the plane
It is possible to tessellate the plane by copies of Koch snowflakes in two different sizes. However, such a tessellation is not possible using only snowflakes of one size. Since each Koch snowflake in the tessellation can be subdivided into seven smaller snowflakes of two different sizes, it is also possible to find tessellations that use more than two sizes at once.[11] Koch snowflakes and Koch antisnowflakes of the same size may be used to tile the plane.
Thue–Morse sequence and turtle graphics
A turtle graphic is the curve that is generated if an automaton is programmed with a sequence.
If the Thue–Morse sequence members are used in order to select program states:
If , move ahead by one unit,
If , rotate counterclockwise by an angle of ,
the resulting curve converges to the Koch snowflake.
Here, F means "draw forward", - means "turn right 60°", and + means "turn left 60°".
To create the Koch snowflake, one would use F--F--F (an equilateral triangle) as the axiom.
Variants of the Koch curve
Following von Koch's concept, several variants of the Koch curve were designed, considering right angles (quadratic), other angles (Cesàro), circles and polyhedra and their extensions to higher dimensions (Sphereflake and Kochcube, respectively)
The Cesàro fractal is a variant of the Koch curve with an angle between 60° and 90°.[citation needed] First four iterations of a Cesàro antisnowflake (four 60° curves arranged in a 90° square)
≈1.46D, 90° angle
Quadratic type 1 curve
First two iterations
1.5D, 90° angle
Quadratic type 2 curve
Minkowski Sausage[12] First two iterations. Its fractal dimension equals and is exactly half-way between dimension 1 and 2. It is therefore often chosen when studying the physical properties of non-integer fractal objects.
≤2D, 90° angle
Third iteration
Minkowski Island Four quadratic type 2 curves arranged in a square
≈1.37D, 90° angle
Quadratic flake
4 quadratic type 1 curves arranged in a polygon: First two iterations. Known as the "Minkowski Sausage",[13][14][15] its fractal dimension equals .[16]
≤2D, 90° angle
Quadratic antiflake
Anticross-stitch curve, the quadratic flake type 1, with the curves facing inwards instead of outwards (Vicsek fractal)
Quadratic curve, iterations 0, 1, and 2; dimension of
≤2D, 60° angle
von Koch surface
First three iterations of a natural extension of the Koch curve in two dimensions.
≤2D, 90° angle
First (blue block), second (plus green blocks), third (plus yellow blocks) and fourth (plus transparent blocks) iterations of the type 1 3D Koch quadratic fractal
Extension of the quadratic type 1 curve. The illustration at left shows the fractal after the second iteration Animation quadratic surface
≤3D, any
Koch curve in 3D
A three-dimensional fractal constructed from Koch curves. The shape can be considered a three-dimensional extension of the curve in the same sense that the Sierpiński pyramid and Menger sponge can be considered extensions of the Sierpinski triangle and Sierpinski carpet. The version of the curve used for this shape uses 85° angles.
Squares can be used to generate similar fractal curves. Starting with a unit square and adding to each side at each iteration a square with dimension one third of the squares in the previous iteration, it can be shown that both the length of the perimeter and the total area are determined by geometric progressions. The progression for the area converges to while the progression for the perimeter diverges to infinity, so as in the case of the Koch snowflake, we have a finite area bounded by an infinite fractal curve.[18] The resulting area fills a square with the same center as the original, but twice the area, and rotated by radians, the perimeter touching but never overlapping itself.
The total area covered at the th iteration is:
while the total length of the perimeter is:
which approaches infinity as increases.
Functionalisation
In addition to the curve, the paper by Helge von Koch that has established the Koch curve shows a variation of the curve as an example of a continuous everywhere yet nowhere differentiable function that was possible to represent geometrically at the time. From the base straight line, represented as AB, the graph can be drawn by recursively applying the following on each line segment:
Divide the line segment (XY) into three parts of equal length, divided by dots C and E.
Draw a line DM, where M is the middle point of CE, and DM is perpendicular to the initial base of AB, having the length of .
Draw the lines CD and DE and erase the lines CE and DM.
Each point of AB can be shown to converge to a single height. If is defined as the distance of that point to the initial base, then as a function is continuous everywhere and differentiable nowhere.[3]
^Addison, Paul S. (1997). Fractals and Chaos: An Illustrated Course. Institute of Physics. p. 19. ISBN0-7503-0400-6.
^Lauwerier, Hans (1991). Fractals: Endlessly Repeated Geometrical Figures. Translated by Gill-Hoffstädt, Sophia. Princeton University Press. p. 36. ISBN0-691-02445-6. Mandelbrot called this a Koch island.
Web of ScienceProduserClarivate Analytics (Amerika Serikat)CakupanDisiplinSains, ilmu sosial, seni, humaniora (mendukung 256 disiplin ilmu)Kedalaman catatanPengindeksan kutipan, penulis, judul topik, kata kunci subjek, abstrak, judul berkala, alamat penulis, tahun publikasiFormatArtikel teks lengkap, ulasan, editorial, kronologi, abstrak, prosiding (berbasis jurnal dan buku), makalah teknisMasa1900 hingga sekarangJumlah catatan90 juta +Tautan Situs web Web of Science (sebelumnya dikenal sebag...
LazyTown character Fictional character StephanieLazyTown characterFirst appearanceÁfram Latibær! (1996)Last appearanceMystery of the Pyramid (2014)[citation needed]Created byMagnús SchevingPortrayed byShelby Young (pilot) Julianna Rose Mauriello (Series 1–2, LazyTown Extra)Chloe Lang (Series 3–4)Kimberly Pena (stage show)In-universe informationNickname'Pinky', 'SportaStephanie',[1] 'Pink Girl'SpeciesHumanGenderFemaleOccupationAspiring dancer and cheerleaderFamilyMilford...
Este artículo o sección necesita referencias que aparezcan en una publicación acreditada.Este aviso fue puesto el 24 de febrero de 2018. El protestantismo en Japón constituye una minoría religiosa de alrededor del 0.4% de la población total[1]. Todas las principales denominaciones protestantes tradicionales están presentes en el país, incluidos los bautistas, pentecostales, luteranos, anglicanos, metodistas, presbiterianos, menonitas, Ejército de Salvación [Movimiento Misione...
De UEFA Super Cup 1976 bestond uit twee voetbalwedstrijden die gespeeld werden in het kader van de UEFA Super Cup. De wedstrijden vonden plaats tussen de winnaar van de Europacup I 1975/76, Bayern München, en de winnaar van de Europacup II 1975/76, RSC Anderlecht, op 17 augustus en 30 augustus 1976. De heenwedstrijd werd in München gespeeld en eindigde op 2-1 voor de thuisploeg. Een week later won Anderlecht in eigen huis met 4-1 en sleepte zo de eerste Europese Supercup uit de geschiedenis...
لمعانٍ أخرى، طالع كيفن أوبراين (توضيح). كيفن أوبراين معلومات شخصية الميلاد 4 مارس 1984 (39 سنة) دبلن الجنسية نيوزيلندا الأب براندان أوبراين أخوة وأخوات نايل أوبراين الحياة العملية الفرق منتخب أيرلندا للكريكتنادي مقاطعة نوتنغهامشير للكريكت [لغ...
54e Formule 1-seizoen (2003) Volgende: 2004Vorige: 2002 Michael Schumacher werd voor de 6e keer wereldkampioen Algemene informatie Races 16 Coureurs 24 Constructeurs 10 Verdedigendkampioen Michael Schumacher (coureurs) Ferrari (constructeurs) Uitzendrechten SBS6 Eindstand coureurs 1e plaats Michael Schumacher 93 (6e titel) 2e plaats Kimi Räikkönen 91 3e plaats Juan Pablo Montoya 82 Eindstand constructeurs 1e plaats Ferrari 158 (12e titel) 2e plaats Vlag van Verenigd Koninkrijk Wil...
Історія Європейського Союзу до 19451945-19571958–19721973-19931993-2004з 2004Портал «Європейський Союз» переглянутиобговоритиредагувати Історія Європейської Унії з 2004 року по теперішній час є поточною хронологією Європейської Унії. Це період значних потрясінь і реформ після розширення...
Law college in Bihar This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Bihar Institute of Law – news · newspapers · books · scholar · JSTOR (October 2019) (L...
Japanese light novel series This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) The topic of this article may not meet Wikipedia's notability guideline for books. Please help to demonstrate the notability of the topic by citing reliable secondary sources that are independent of the topic and provide significant coverage of it beyond a mere trivial mention. If notability cannot be shown, the a...
American rapper SupernaturalSuper Nat performing live in 2008Background informationBirth nameReco Dewayne Price[1]Also known asInfinite RhymesBorn (1970-04-23) April 23, 1970 (age 53)Marion, Indiana, U.S.OriginBronx, New York City, U.S.Genres Alternative hip hop Underground hip hop Freestyle rap Years active1989–presentLabels Babygrande Up Above Records Musical artist Reco Dewayne Price (born April 23, 1970), better known by his stage name Supernatural (a.k.a. Super Nat or MC S...
Unit of time equal to 60 minutes For other uses, see Hour (disambiguation). Midnight (or noon) to 1 on a 12-hour clock with an analogue face Midnight to 1 a.m. on a 24-hour clock with a digital face An hour (symbol: h;[1] also abbreviated hr) is a unit of time historically reckoned as 1⁄24 of a day and defined contemporarily as exactly 3,600 seconds (SI). There are 60 minutes in an hour, and 24 hours in a day. The hour was initially established in the ancient Near East as a vari...
1984 studio album by Philip BaileyChinese WallStudio album by Philip BaileyReleasedOctober 1984Recorded Townhouse Studios, London, England The Complex, Los Angeles, California Ocean Way Recording, Los Angeles, California GenrePop, soul, rockLength50:17LabelColumbiaProducerPhil CollinsPhilip Bailey chronology The Wonders of His Love(1984) Chinese Wall(1984) Triumph(1986) Singles from Chinese Wall Easy LoverReleased: November 1984 (US) Photogenic MemoryReleased: 1984 Walking on the Chin...
23 Juli adalah hari ke-204 (hari ke-205 dalam tahun kabisat) dalam kalender Gregorian. << Juli >> Mi Sn Sl Ra Ka Ju Sa 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 2023 Peristiwa 1952 - Kudeta militer pimpinan Gamal Abdel Nasser memaksa Raja Farouk dari Mesir untuk turun takhta. 1973 - Pendirian Komite Nasional Pemuda Indonesia. 1995 - Komet Hale-Bopp ditemukan oleh dua pengamat independen, Alan Hale dan Thomas Bopp, pada jara...
2006 film by Ravi Babu PartyDirected byRavi BabuScreenplay bySatyanandStory byRavi BabuProduced byKumar KatineniStarringAllari NareshShashankMadhu SharmaBrahmanandamCinematographyN. Sudhakar ReddyEdited byMarthand K. VenkateshMusic byChakriRelease date 24 March 2006 (24 March 2006) CountryIndiaLanguageTelugu Party is a 2006 Indian Telugu-language film, directed by Ravi Babu in the genre of comedy that makes a statement on the corporate environment shaping the IT world in the new millenni...
2020 studio album by Health Disco4: Part IStudio album by HealthReleasedOctober 16, 2020 (2020-10-16)GenreElectro-industrialnoise rockEBMelectropunksynth-popindustrial metal[1]Length38:37LabelLoma VistaHealth chronology Vol. 4: Slaves of Fear(2019) Disco4: Part I(2020) #Disco4: Part II(2022) Professional ratingsReview scoresSourceRatingFlood Magazine8/10[2]Sputnikmusic4.3/5[3] Disco4+Remix album by HealthReleasedAugust 20, 2021 (20...
Set index In Greek mythology, Eriboea (Ancient Greek: Ἐρίβοια), also Eeriboea (Ἠερίβοια) were the name of the following figures: Eriboea, second wife of Aloeus and daughter of Eurymachus, son of Hermes.[1] Eriboea, alternate name for Periboea, wife of Telamon and mother of Ajax the Lesser.[2] Eriboea, one of the Amazons. She was killed by the hero Heracles.[3] Notes ^ Köppen, Johann Heinrich Just; Heinrich, Karl Friedrich; Krause, Johann Christian Hei...
American rapper (born 1967) Rob Van Winkle redirects here. For the short story, see Rip Van Winkle. Vanilla IceVanilla Ice in 2010Background informationBirth nameRobert Matthew Van WinkleBorn (1967-10-31) October 31, 1967 (age 56)Dallas, Texas, U.S.OriginDallas, Texas, U.S.Miami, Florida, U.S.Genres Hip hop[1][2] rap rock[3][4] nu metal[1][5] rap metal[2] Occupation(s)Rapperactorrecord producersingertelevision hostYears active1985...