Icosahedron

Convex regular icosahedron
A tensegrity icosahedron

In geometry, an icosahedron (/ˌkɒsəˈhdrən, -kə-, -k-/ or /ˌkɒsəˈhdrən/[1]) is a polyhedron with 20 faces. The name comes from Ancient Greek εἴκοσι (eíkosi) 'twenty' and ἕδρα (hédra) 'seat'. The plural can be either "icosahedra" (/-drə/) or "icosahedrons".

There are infinitely many non-similar shapes of icosahedra, some of them being more symmetrical than others. The best known is the (convex, non-stellated) regular icosahedron—one of the Platonic solids—whose faces are 20 equilateral triangles.

Regular icosahedra

Two kinds of regular icosahedra

There are two objects, one convex and one nonconvex, that can both be called regular icosahedra. Each has 30 edges and 20 equilateral triangle faces with five meeting at each of its twelve vertices. Both have icosahedral symmetry. The term "regular icosahedron" generally refers to the convex variety, while the nonconvex form is called a great icosahedron.

Convex regular icosahedron

Three interlocking golden rectangles inscribed in a con­vex regular icosahedron

The convex regular icosahedron is usually referred to simply as the regular icosahedron, one of the five regular Platonic solids, and is represented by its Schläfli symbol {3, 5}, containing 20 triangular faces, with 5 faces meeting around each vertex.

Its dual polyhedron is the regular dodecahedron {5, 3} having three regular pentagonal faces around each vertex.

Great icosahedron

A detail of Spinoza monument in Amsterdam
A detail of Spinoza monument in Amsterdam

The great icosahedron is one of the four regular star Kepler-Poinsot polyhedra. Its Schläfli symbol is {3, 5/2}. Like the convex form, it also has 20 equilateral triangle faces, but its vertex figure is a pentagram rather than a pentagon, leading to geometrically intersecting faces. The intersections of the triangles do not represent new edges.

Its dual polyhedron is the great stellated dodecahedron {5/2, 3}, having three regular star pentagonal faces around each vertex.

Stellated icosahedra

Stellation is the process of extending the faces or edges of a polyhedron until they meet to form a new polyhedron. It is done symmetrically so that the resulting figure retains the overall symmetry of the parent figure.

In their book The Fifty-Nine Icosahedra, Coxeter et al. enumerated 59 such stellations of the regular icosahedron.

Of these, many have a single face in each of the 20 face planes and so are also icosahedra. The great icosahedron is among them.

Other stellations have more than one face in each plane or form compounds of simpler polyhedra. These are not strictly icosahedra, although they are often referred to as such.

Notable stellations of the icosahedron
Regular Uniform duals Regular compounds Regular star Others
(Convex) icosahedron Small triambic icosahedron Medial triambic icosahedron Great triambic icosahedron Compound of five octahedra Compound of five tetrahedra Compound of ten tetrahedra Great icosahedron Excavated dodecahedron Final stellation
The stellation process on the icosahedron creates a number of related polyhedra and compounds with icosahedral symmetry.

Pyritohedral symmetry

Pyritohedral and tetrahedral symmetries
Coxeter diagrams (pyritohedral)
(tetrahedral)
Schläfli symbol s{3,4}
sr{3,3} or
Faces 20 triangles:
8 equilateral
12 isosceles
Edges 30 (6 short + 24 long)
Vertices 12
Symmetry group Th, [4,3+], (3*2), order 24
Rotation group Td, [3,3]+, (332), order 12
Dual polyhedron Pyritohedron
Properties convex

Net
A regular icosahedron is topologically identical to a cuboctahedron with its 6 square faces bisected on diagonals with pyritohedral symmetry. There exists a kinematic transformation between cuboctahedron and icosahedron.

A regular icosahedron can be distorted or marked up as a lower pyritohedral symmetry,[2][3] and is called a snub octahedron, snub tetratetrahedron, snub tetrahedron, and pseudo-icosahedron.[4] This can be seen as an alternated truncated octahedron. If all the triangles are equilateral, the symmetry can also be distinguished by colouring the 8 and 12 triangle sets differently.

Pyritohedral symmetry has the symbol (3*2), [3+,4], with order 24. Tetrahedral symmetry has the symbol (332), [3,3]+, with order 12. These lower symmetries allow geometric distortions from 20 equilateral triangular faces, instead having 8 equilateral triangles and 12 congruent isosceles triangles.

These symmetries offer Coxeter diagrams: and respectively, each representing the lower symmetry to the regular icosahedron , (*532), [5,3] icosahedral symmetry of order 120.

Cartesian coordinates

Construction from the vertices of a truncated octahedron, showing internal rectangles.

The Cartesian coordinates of the 12 vertices can be defined by the vectors defined by all the possible cyclic permutations and sign-flips of coordinates of the form (2, 1, 0). These coordinates represent the truncated octahedron with alternated vertices deleted.

This construction is called a snub tetrahedron in its regular icosahedron form, generated by the same operations carried out starting with the vector (ϕ, 1, 0), where ϕ is the golden ratio.[3]

Jessen's icosahedron

Jessen's icosahedron

In Jessen's icosahedron, sometimes called Jessen's orthogonal icosahedron, the 12 isosceles faces are arranged differently so that the figure is non-convex and has right dihedral angles.

It is scissors congruent to a cube, meaning that it can be sliced into smaller polyhedral pieces that can be rearranged to form a solid cube.

Cuboctahedron

Progressions between an octahedron, pseudoicosahedron, and cuboctahedron. The cuboctahedron can flex this way even if its edges (but not its faces) are rigid.

A regular icosahedron is topologically identical to a cuboctahedron with its 6 square faces bisected on diagonals with pyritohedral symmetry. The icosahedra with pyritohedral symmetry constitute an infinite family of polyhedra which include the cuboctahedron, regular icosahedron, Jessen's icosahedron, and double cover octahedron. Cyclical kinematic transformations among the members of this family exist.

Other icosahedra

Rhombic icosahedron

Rhombic icosahedron

The rhombic icosahedron is a zonohedron made up of 20 congruent rhombs. It can be derived from the rhombic triacontahedron by removing 10 middle faces. Even though all the faces are congruent, the rhombic icosahedron is not face-transitive.

Pyramid and prism symmetries

Common icosahedra with pyramid and prism symmetries include:

  • 19-sided pyramid (plus 1 base = 20).
  • 18-sided prism (plus 2 ends = 20).
  • 9-sided antiprism (2 sets of 9 sides + 2 ends = 20).
  • 10-sided bipyramid (2 sets of 10 sides = 20).
  • 10-sided trapezohedron (2 sets of 10 sides = 20).

Johnson solids

Several Johnson solids are icosahedra:[5]

J22 J35 J36 J59 J60 J92

Gyroelongated triangular cupola

Elongated triangular orthobicupola

Elongated triangular gyrobicupola

Parabiaugmented dodecahedron

Metabiaugmented dodecahedron

Triangular hebesphenorotunda
16 triangles
3 squares
 
1 hexagon
8 triangles
12 squares
8 triangles
12 squares
10 triangles
 
10 pentagons
10 triangles
 
10 pentagons
13 triangles
3 squares
3 pentagons
1 hexagon

See also

References

  1. ^ Jones, Daniel (2003) [1917], Peter Roach; James Hartmann; Jane Setter (eds.), English Pronouncing Dictionary, Cambridge: Cambridge University Press, ISBN 3-12-539683-2
  2. ^ Koca, Nazife; Al-Mukhaini, Aida; Koca, Mehmet; Al Qanobi, Amal (2016-12-01). "Symmetry of the Pyritohedron and Lattices". Sultan Qaboos University Journal for Science [SQUJS]. 21 (2): 139. doi:10.24200/squjs.vol21iss2pp139-149.
  3. ^ a b John Baez (September 11, 2011). "Fool's Gold".
  4. ^ Kappraff, Jay (1991). Connections: The Geometric Bridge Between Art and Science (2nd ed.). World Scientific. p. 475. ISBN 978-981-281-139-4.
  5. ^ Icosahedron on Mathworld.

Read other articles:

Ancient Cilician city For other uses, see Soli (disambiguation). Roman colonnade at the site.Soli (Ancient Greek: Σόλοι, Sóloi), often rendered Soli/Pompeiopolis (Ancient Greek: Πομπηϊούπολις), was an ancient city and port in Cilicia, 11 km west of Mersin in present-day Turkey. Geography The red dot shows the position of Mersin in a map of present-day Turkey. At this scale, it coincides with the position of Soli. Pompeiopolis from an 1812 Admiralty Chart Located in Sou...

 

BudimanKepala Staf TNI Angkatan Darat ke-29Masa jabatan30 Agustus 2013 – 25 Juli 2014PresidenSusilo Bambang YudhoyonoPanglima TNIAgus Suhartono (2013)Moeldoko (2013-14)PendahuluJenderal TNI MoeldokoPenggantiJenderal TNI Gatot NurmantyoPangdam IV/DiponegoroMasa jabatanOktober 2009 – Juni 2010PendahuluMayjen TNI Haryadi SoetantoPenggantiMayor Jenderal TNI Langgeng Sulistiyono Informasi pribadiLahir25 September 1956 (umur 67)Jakarta, DKI JakartaKebangsaanIndonesiaP...

 

Derechos LGBT en SurinamBanderaEscudo Surinam en América del SurHomosexualidadEs legal Desde 1869Edad de consentimiento sexualHeterosexual y homosexual igual Edad de consentimiento homosexual 18 añosProtección legal contra la discriminaciónLaboral Bienes y servicios En todos los aspectos Protección legal de parejaAcceso igualitario a la unión civil Matrimonio entre personas del mismo sexo Derechos reproductivos y de adopciónAcceso igualitario a la adopción monoparental Derecho de adopci

Sei Putih Timur IKelurahanGapura selamat datang di Kelurahan Sei Putih Timur INegara IndonesiaProvinsiSumatera UtaraKotaMedanKecamatanMedan PetisahKodepos20118Kode Kemendagri12.71.19.1006 Kode BPS1275130005 Luas... km²Jumlah penduduk... jiwaKepadatan... jiwa/km² Sei Putih Timur I adalah kelurahan di kecamatan Medan Petisah, Medan, Sumatera Utara, Indonesia. Gereja HKBP Pabrik Tenun di Kelurahan Sei Putih Timur I lbsKecamatan Medan Petisah, Kota Medan, Sumatera UtaraKelurahan Petisah Te...

 

Dokter per 1.000 orang pada tahun 2018.[1] Dokter (bahasa Belanda: dokter, arts atau geneesheer; bahasa Inggris: medical doctor, disingkat M.D.; dari bahasa Latin medicinae doctor) adalah seseorang yang karena keilmuannya berusaha menyembuhkan orang-orang yang sakit. Tidak semua orang yang menyembuhkan penyakit bisa disebut dokter. Untuk menjadi dokter biasanya diperlukan pendidikan dan pelatihan khusus dan mempunyai gelar dalam bidang kedokteran. Etimologi Kata dokter diserap dari ba...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada November 2022. Bebe LillyNama lainBebe LillyAsalPerancisGenreMusik elektronikTahun aktif2006 - sekarangLabelHeben Music, Sony BMG Music Entertainment Indonesia Bébé Lilly adalah penyanyi animasi bayi perempuan di Perancis. Dia telah merilis 13 single, terutama dal...

Masjid Agung JamiaAgamaAfiliasi agamaSunni IslamDistrikLahoreProvinsiPunjabEcclesiastical or organizational statusMasjidKepemimpinanMalik RiazDiberkati2014LokasiLokasiBahria Town, Lahore, PakistanKoordinat31°22′5.16″N 74°11′8.84″E / 31.3681000°N 74.1857889°E / 31.3681000; 74.1857889Koordinat: 31°22′5.16″N 74°11′8.84″E / 31.3681000°N 74.1857889°E / 31.3681000; 74.1857889ArsitekturJenisMasjidGaya arsitekturIslami, MughalSpe...

 

Santa Helena Associação Associação de Futebol de Santa Helena Treinador Nick Stevens Capitão Rico Benjamin Mais participações Rico Benjamin e Ronan Legg (5) Melhor marcador?  Rico Benjamin (3) Uniformetitular Uniformealternativo Jogos 1.ª partida internacional Não-oficial: Lockheed Leamington 15–3 Santa Helena (Leamington Spa, Inglaterra; 12 de novembro de 1949)Oficial: Anglesey 7–2 Santa Helena (Bryn Du, Anglesey; 12 de junho de 2019) Melhor resultado Holyhead Hotspur 0–2...

 

Ordem de Nossa Senhora da Caridade(O.D.N.C.) Ordem de Nossa Senhora da Caridade Ordem de Nossa Senhora da CaridadeO fundador, São João Eudes, com as religiosas da ordem. Tipo Ordem religiosa de clausura monástica Fundação 25 de novembro de 1641 Fundador(a) São João Eudes Sítio oficial www.buonpastoreint.org O hábito religioso das Irmãs da Ordem de Nossa Senhora da Caridade. A Ordem de Nossa Senhora da Caridade[1][2] (Latim: Ordo Dominae Nostrae de Caritate, sigla O.D.N.C.), também ...

French actress Lilian ConstantiniLilian Constantini (Le Pèlerin)BornLiliane Louise Hélène Chapiro-VolpertSeptember 26, 1902Paris, FranceDiedJanuary 5, 1982 (1982-01-06) (aged 79)Saint-Tropez, FranceOccupationActressSpouseCharles SchneiderChildrenDominique SchneidreParent(s)Boris Chapiro-VolpertLouise GuesdeRelativesJules Guesde (maternal grandfather) Lilian Constantini (September 26, 1902 – January 5, 1982) was a French silent actress in the 1920s and 1930s. Early life Liliane ...

 

Potret Zofia Albinowska-Minkiewiczow Zofia Albinowska-Minkiewiczowa (Klagenfurt, Kadipaten Kärnten, Austria-Hungaria 1886-1971, Lviv, Soviet Ukraina) adalah seorang seniman, pelukis dan pengukir Polandia dan Ukraina yang terikat pada lingkaran seniman Lviv, dan untuk bertahun-tahun presiden Persatuan Seniman Polandia (Zwiazek Artystów Polskich). Terlahir sebagai Zofia Albinowska, dia menandatangani lukisannya dengan cara ini. Dia kemudian menikah Witold Minkiewicz, profesor arsitektur di Lv...

 

Resolusi 827Dewan Keamanan PBBPengadilan Pidana Internasional untuk bekas YugoslaviaTanggal25 Mei 1993Sidang no.3.217KodeS/RES/827 (Dokumen)TopikPengadilan (Bekas Yugoslavia)Ringkasan hasil15 mendukungTidak ada menentangTidak ada abstainHasilDiadopsiKomposisi Dewan KeamananAnggota tetap Tiongkok Prancis Rusia Britania Raya Amerika SerikatAnggota tidak tetap Brasil Tanjung Verde Djibouti Spanyol Hungaria Jepang Maroko S...

American-bred Thoroughbred racehorse For other uses, see Zenyatta (disambiguation). ZenyattaZenyatta winning the Lady's Secret StakesSireStreet CryGrandsireMachiavellianDamVertigineuxDamsireKris S.SexMareFoaled (2004-04-01) April 1, 2004 (age 19)Lexington, Kentucky, U.S.CountryUnited StatesColourDark Bay/BrownBreederMaverick Productions, LimitedOwnerJerry & Ann MossTrainerJohn ShirreffsJockeyMike SmithRecord20: 19–1–0Earnings$7,304,580[1]Major winsEl Encino Stakes (2008)A...

 

DulalowoKelurahanNegara IndonesiaProvinsiGorontaloKotaGorontaloKecamatanKota TengahKode Kemendagri75.71.06.1002 Kode BPS7571031002 Luas... km²Jumlah penduduk... jiwaKepadatan... jiwa/km² Kantor Lurah Dulalowo Dulalowo adalah salah satu kelurahan di wilayah kecamatan Kota Tengah, Kota Gorontalo, Provinsi Gorontalo, Indonesia. Pranala luar (Indonesia) Keputusan Menteri Dalam Negeri Nomor 050-145 Tahun 2022 tentang Pemberian dan Pemutakhiran Kode, Data Wilayah Administrasi Pemerintahan, d...

 

1568 treaty which ended the second phase of the French Wars of Religion Treaty of LongjumeauPicture of Charles IX who issued the peaceSigned24 March 1568LocationLongjumeauSignatoriesCharles IX of France Louis, Prince of Conde (1530-1569)LanguagesFrench vteFrench Wars of Religion First; 1562–1563Rouen; Vergt; Dreux; Orléans Second; 1567–1568Saint-Denis; Chartres Third; 1568–1570Jarnac; La Roche-l'Abeille; Poitiers; Orthez; Moncontour; Saint-Jean d'Angély; Arney-le-Duc Fourth; 1572–15...

1993 single by Things of Stone and WoodSingle Perfect RaindropCD single coverSingle by Things of Stone and Woodfrom the album The Yearning ReleasedJune 1993Length4:08LabelCapitolSongwriter(s)Greg ArnoldProducer(s)James Black, Martin PullanThings of Stone and Wood singles chronology Rock This Boat (1993) Single Perfect Raindrop (1993) Wildflowers (1994) Single Perfect Raindrop is a song written by Greg Arnold and recorded by Australian folk-rock band Things of Stone and Wood. The song was rele...

 

University in Hsinchu City, Taiwan This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (October 2014) (Learn how and when to remove this template message) Hsuan Chuang University玄奘大學Motto德智勤毅(Pe̍h-ōe-jī: Tek-tì Khîn-gē)[1]Motto in EnglishVirtue, Knowledge, Diligence and Perseverance[2]TypePrivateEstablished1997Academi...

 

此條目需要擴充。 (2014年7月6日)请協助改善这篇條目,更進一步的信息可能會在討論頁或扩充请求中找到。请在擴充條目後將此模板移除。 此條目需要补充更多来源。 (2014年7月6日)请协助補充多方面可靠来源以改善这篇条目,无法查证的内容可能會因為异议提出而被移除。致使用者:请搜索一下条目的标题(来源搜索:腎上腺酸 — 网页、新闻、书籍、学术、图像),以...

Library system in London, Ontario, Canada London Public LibraryLocationLondon, Ontario - Central Branch: 251 Dundas Street, CanadaEstablished1896Branches16CollectionItems collectedbusiness directories, phone books, maps, government publications, books, periodicals, genealogy, local historyAccess and useCirculation3,869,642 items borrowed 4,012,731 website visitsPopulation served2,737,988 annual visitsOther informationBudget$20,117,983DirectorMichael Ciccone (CEO & Chief Librarian)[1&#...

 

2013 video gameNarcoGuerraDeveloper(s)GameTheNewsEngineUnityPlatform(s)Windows, macOS, Android, iOSReleaseJune 2013Genre(s)Strategy, newsgameMode(s)Single-player NarcoGuerra, Spanish for DrugWar, is a strategy newsgame developed by GameTheNews.net. It was released in June 2013 for Android, PC, Mac, iPhone, iPod Touch and iPad. The game criticises the ongoing War on Drugs and more specifically the Mexican Drug War which the developer claims ″...is a challenging and tactical newsgame that put...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!