Deltoidal hexecontahedron

Deltoidal hexecontahedron
Deltoidal hexecontahedron
(Click here for rotating model)
Type Catalan
Conway notation oD or deD
Coxeter diagram
Face polygon
kite
Faces 60
Edges 120
Vertices 62 = 12 + 20 + 30
Face configuration V3.4.5.4
Symmetry group Ih, H3, [5,3], (*532)
Rotation group I, [5,3]+, (532)
Dihedral angle 154.1214° arccos(-19-85/41)
Properties convex, face-transitive

rhombicosidodecahedron
(dual polyhedron)
Deltoidal hexecontahedron net
Net
3D model of a deltoidal hexecontahedron

In geometry, a deltoidal hexecontahedron (also sometimes called a trapezoidal hexecontahedron, a strombic hexecontahedron, or a tetragonal hexacontahedron[1]) is a Catalan solid which is the dual polyhedron of the rhombicosidodecahedron, an Archimedean solid. It is one of six Catalan solids to not have a Hamiltonian path among its vertices.[2]

It is topologically identical to the nonconvex rhombic hexecontahedron.

Lengths and angles

The 60 faces are deltoids or kites. The short and long edges of each kite are in the ratio 1:7 + 5/6 ≈ 1:1.539344663...

The angle between two short edges in a single face is arccos(-5-25/20)≈118.2686774705°. The opposite angle, between long edges, is arccos(-5+95/40)≈67.783011547435° . The other two angles of each face, between a short and a long edge each, are both equal to arccos(5-25/10)≈86.97415549104°.

The dihedral angle between any pair of adjacent faces is arccos(-19-85/41)≈154.12136312578°.

Topology

Topologically, the deltoidal hexecontahedron is identical to the nonconvex rhombic hexecontahedron. The deltoidal hexecontahedron can be derived from a dodecahedron (or icosahedron) by pushing the face centers, edge centers and vertices out to different radii from the body center. The radii are chosen so that the resulting shape has planar kite faces each such that vertices go to degree-3 corners, faces to degree-five corners, and edge centers to degree-four points.

Cartesian coordinates

The 62 vertices of the deltoidal hexecontahedron fall in three sets centered on the origin:

  • Twelve vertices are of the form of a unit circumradius regular icosahedron.
  • Twenty vertices are of the form of a scaled regular dodecahedron.
  • Thirty vertices are of the form of a scaled Icosidodecahedron.

These hulls are visualized in the figure below:

Deltoidal hexacontahedron hulls

Orthogonal projections

The deltoidal hexecontahedron has 3 symmetry positions located on the 3 types of vertices:

Orthogonal projections
Projective
symmetry
[2] [2] [2] [2] [6] [10]
Image
Dual
image

Variations

This figure from Perspectiva Corporum Regularium (1568) by Wenzel Jamnitzer can be seen as a deltoidal hexecontahedron.

The deltoidal hexecontahedron can be constructed from either the regular icosahedron or regular dodecahedron by adding vertices mid-edge, and mid-face, and creating new edges from each edge center to the face centers. Conway polyhedron notation would give these as oI, and oD, ortho-icosahedron, and ortho-dodecahedron. These geometric variations exist as a continuum along one degree of freedom.

Spherical deltoidal hexecontahedron
Family of uniform icosahedral polyhedra
Symmetry: [5,3], (*532) [5,3]+, (532)
{5,3} t{5,3} r{5,3} t{3,5} {3,5} rr{5,3} tr{5,3} sr{5,3}
Duals to uniform polyhedra
V5.5.5 V3.10.10 V3.5.3.5 V5.6.6 V3.3.3.3.3 V3.4.5.4 V4.6.10 V3.3.3.3.5

When projected onto a sphere (see right), it can be seen that the edges make up the edges of an icosahedron and dodecahedron arranged in their dual positions.

This tiling is topologically related as a part of sequence of deltoidal polyhedra with face figure (V3.4.n.4), and continues as tilings of the hyperbolic plane. These face-transitive figures have (*n32) reflectional symmetry.

*n32 symmetry mutation of dual expanded tilings: V3.4.n.4
Symmetry
*n32
[n,3]
Spherical Euclid. Compact hyperb. Paraco.
*232
[2,3]
*332
[3,3]
*432
[4,3]
*532
[5,3]
*632
[6,3]
*732
[7,3]
*832
[8,3]...
*∞32
[∞,3]
Figure
Config.

V3.4.2.4

V3.4.3.4

V3.4.4.4

V3.4.5.4

V3.4.6.4

V3.4.7.4

V3.4.8.4

V3.4.∞.4

See also

References

  1. ^ Conway, Symmetries of things, p.284-286
  2. ^ "Archimedean Dual Graph".


Read other articles:

Историческое государствоКоролевство Тунисараб. المملكة التونسية‎ Флаг Туниса Герб Туниса Гимн: Салам аль-Бей ←   → 1956 — 1957 Столица Тунис Язык(и) французский, итальянский, берберские языки, арабский, тунисский арабский, еврейско-тунисский диалект арабского яз...

 

Simbol kedokteran hewan: tongkat Asklepios dan huruf V (merujuk pada veteriner) Kedokteran hewan adalah suatu disiplin ilmiah yang mempelajari cara melakukan diagnosis, terapi, dan pencegahan penyakit pada hewan. Ilmu kedokteran hewan diterapkan secara luas terhadap berbagai hewan, baik hewan domestik maupun satwa liar, serta mencakup hewan terestrial dan hewan akuatik. Selain kesehatan hewan, aspek lain yang didalami oleh bidang ilmu ini adalah kesejahteraan hewan dan kesehatan masyarakat ve...

 

Abzeichen der Korporationsverbände (um 1920) Die meisten Studentenverbindungen sind in sogenannten Korporationsverbänden organisiert. Das sind (Dach-)Verbände von Studentenverbindungen bestimmter Korporationsarten, wie z. B. Corps, Landsmannschaften, Burschenschaften oder katholische Studentenverbindungen. Sie haben eine eigene Satzung, die genau regelt, welche Verbindung unter welchen Umständen beitreten kann, und vereinen Verbindungen, die bestimmte Formalien und/oder Prinzipien ge...

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أبريل 2019) قاي ر. سترونج معلومات شخصية الميلاد 15 يونيو 1930 (93 سنة)  إرفين  مواطنة الولايات المتحدة  الحياة العملية المدرسة الأم جامعة كنتاكي الشرقيةجامعة كنتاكي...

 

Katschberg KatschbergUbicación (Austria).Ubicación geográficaCordillera Grupo Ankogel y Alpes de GurktalCoordenadas 47°03′33″N 13°36′56″E / 47.0592, 13.6156Ubicación administrativaPaís AustriaDivisión Rennweg am Katschberg y Sankt Michael im LungauCaracterísticasAltitud 1641 metrosAtravesado por Katschberg Straße[editar datos en Wikidata] El Katschberg es un paso de montaña alpino y una gran estación de esquí, ubicado en el norte de Carintia en A...

 

Masjid Al-Falah Hualien花蓮清真寺AgamaAfiliasi agamaIslam SunniLokasiLokasiJalan Fuji No. 78, Kota Hualien, Kabupaten Hualien, TaiwanKoordinat23°59′42.9″N 121°35′49.6″E / 23.995250°N 121.597111°E / 23.995250; 121.597111Koordinat: 23°59′42.9″N 121°35′49.6″E / 23.995250°N 121.597111°E / 23.995250; 121.597111{{#coordinates:}}: tidak bisa memiliki lebih dari satu tag utama per halamanArsitekturJenisMasjid Masjid Al-Falah...

Milan 2–1 Liverpool Imagen de los jugadores del AC Milan con la copa.LocalizaciónPaís  Reino UnidoLugar Estadio Olímpico Atenas, GreciaDatos generalesTipo final de la Liga de Campeones de la UEFASuceso Final de Liga de Campeones 2006/2007Asistencia 63000Participantes Milan (Campeón) LiverpoolHistóricoFecha 23 de mayo de 2007Cronología Final de la Liga de Campeones de la UEFA 2005-2006 ◄ Actual ► Final de la Liga de Campeones de la UEFA 2007-2008 [editar datos en Wikidata...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Desember 2022. Maqdis AlfarisiInformasi pribadiNama lengkap Maqdis Shalim AlfarisiTanggal lahir 8 April 1989 (umur 34)Tempat lahir Cirebon,Tinggi 1.70 MPosisi bermain GelandangInformasi klubKlub saat ini Pelita JayaNomor 16Karier senior*Tahun Tim Tampil (Gol)20...

 

ويكيبيديا الصينيةلقطة شاشةمعلومات عامةموقع الويب zh.wikipedia.org (الصينية) الشعار النصي 海納百川,有容乃大 (بالصينية تقليدية)海纳百川,有容乃大 (بالصينية مبسطة) تجاري؟ لانوع الموقع موسوعة حرةتاريخ الإطلاق 11 مايو 2001التأسيس أكتوبر 2002 الجوانب التقنيةاللغة اللغة الصينيةترخيص المحتوى رخ...

1996 filmFargoTheatrical release posterDirected byJoel CoenWritten byJoel CoenEthan CoenProduced byEthan CoenStarring Frances McDormand William H. Macy Steve Buscemi Harve Presnell Peter Stormare CinematographyRoger DeakinsEdited byRoderick Jaynes[a]Music byCarter BurwellProductioncompanies PolyGram Filmed Entertainment Working Title Films Distributed by Gramercy Pictures (United States) PolyGram Filmed Entertainment (United Kingdom)[4] Release dates March 8, 1996...

 

Austronesian language spoken in Maluku, Indonesia Not to be confused with Leti language (Cameroon). LetiNative toIndonesiaRegionLeti IslandsNative speakers(7,500 cited 1995)[1]Language familyAustronesian Malayo-Polynesian (MP)Central–Eastern MPTimoricSouth–East TimorLuangic–KisaricLuangicLetiLanguage codesISO 639-3ltiGlottologleti1246This article contains IPA phonetic symbols. Without proper rendering support, you may see question marks, boxes, or other symbols instead of U...

 

  لمعانٍ أخرى، طالع زيد (توضيح). زيد (بالروسية: Антон Заславский)‏  معلومات شخصية اسم الولادة أنتون زاسلافسكي الميلاد 2 سبتمبر 1989 (العمر 34 سنة)ساراتوف  الإقامة كايزرسلاوترنلوس أنجلوس (2014–)[1][2]  الجنسية  ألمانيا العشير سيلينا غوميز (2015–2015)[3]أليسيا ...

1957 film by Charles Marquis Warren The Unknown TerrorTheatrical posterDirected byCharles Marquis WarrenWritten byKenneth HigginsProduced byRobert StablerStarringJohn HowardMala PowersPaul RichardsMay WynnCinematographyJoseph F. BirocEdited byMichael LucianoMusic byRaoul KraushaarColor processBlack and whiteProductioncompaniesRegal FilmsEmirau ProductionsDistributed by20th Century FoxRelease date August 12, 1957 (1957-08-12) Running time77 minutesCountryUnited StatesLanguageEng...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (نوفمبر 2014) متحف القاطرات البخارية الألمانيالشعارمعلومات عامةنوع railway museum (en) موقع الويب dampflokmuseum.de رقم الهاتف +49-9227-5700[1] المبنىالعنوان Birkenstraße 5, 95339 Neuenmarkt (بالألماني...

 

Wassili Papin, Warschau 2012 Verband Russland Russland Geboren 21. September 1988Moskau Titel Internationaler Meister (2006)Großmeister (2011) Aktuelle Elo‑Zahl 2477 (Dezember 2023) Beste Elo‑Zahl 2583 (September 2011) Karteikarte bei der FIDE (englisch) Wassili Wiktorowitsch Papin (russisch Василий Викторович Папин, Schreibweise beim Weltschachbund FIDE Vasily Papin; * 21. September 1988 in Moskau) ist ein russischer Schachspieler. Leben Bei der Ju...

Sculpture by Auguste Rodin The SuccubusArtistAuguste RodinYear1889MediumBronzeLocationMuseo Soumaya, Mexico City The Succubus is a bronze sculpture with a green and dark brown patina. It was originally conceived in 1889 by the French artist Auguste Rodin as part of a set of works showing sirens and Nereids. It later formed part of his state-commissioned monument to Victor Hugo.[1] It is now in the Museo Soumaya in Mexico City. Description The Succubus It shows a succubus, a demon taki...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: The Z Was Zapped – news · newspapers · books · scholar · JSTOR (August 2015) (Learn how and when to remove this template message) The Z Was Zapped AuthorChris Van AllsburgIllustratorChris Van AllsburgCountryUnited StatesGenreChildren's, Fantasy novelPublisherHo...

 

José María CaroBarrio José María Caro Barrio Otros nombres: La CaroCoordenadas 33°30′34″S 70°41′35″O / -33.509444444444, -70.693055555556Entidad Barrio • País Chile • Ciudad Santiago • Comuna Lo EspejoPedro Aguirre CerdaSubdivisiones 7 sectores con diferentes Unidades Vecinales • Fundación 1959Superficie   • Total 2.59 km²Huso horario UTC -4Límites Avenida General Velásquez (oeste)Línea férrea, Avenida Central (este)...

Canadian indie rock band Said the WhaleSaid the Whale, 2012 Grey Cup Street PartyBackground informationOriginVancouver, British Columbia, CanadaGenresIndie rock, indie folkYears active2007–presentLabelsEVERYTHING FOREVERMembersBen WorcesterTyler BancroftJaycelyn BrownSpencer SchoeningLincoln HotchenPast membersLaura SmithJeff LaForgePeter CarruthersNathan ShawBradley ConnorWebsitewww.saidthewhale.com Said the Whale is a Canadian indie rock band from Vancouver, British Columbia. The band was...

 

American army general (1917–1991) Richard G. StilwellGeneral Stilwell in the 1970sBorn(1917-02-24)February 24, 1917Buffalo, New York, U.S.DiedDecember 25, 1991(1991-12-25) (aged 74)[1][2]Falls Church, Virginia, U.S.AllegianceUnited States of AmericaService/branchUnited States ArmyYears of service1938–1976RankGeneralCommands heldUnited States Forces KoreaSixth United States ArmyXXIV Corps1st Armored Division15th Infantry RegimentBattles/warsWorld War IIKorean WarV...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!