CD81 molecule, also known as CD81 (Cluster of Differentiation 81), is a protein which in humans is encoded by the CD81gene.[5][6] It is also known as 26 kDa cell surface protein, TAPA-1 (Target of the Antiproliferative Antibody 1), and Tetraspanin-28 (Tspan-28).
Gene
The gene is located on the plus strand of the short arm of chromosome 11 (11p15.5). It is 20,103 bases in length and encodes a protein of 236 amino acids (predicted molecular weight 25.809 kDa).[6]
The protein does not appear to be post translationally modified and has four transmembrane domains. Both the N-terminus and C-terminus lie on the intracellular side of the membrane.
The protein encoded by this gene is a member of the transmembrane 4 superfamily, also known as the tetraspanin family. Most of these members are cell-surface proteins that are characterized by the presence of four hydrophobicdomains. The proteins mediate signal transduction events that play a role in the regulation of cell development, activation, growth and motility. This encoded protein is a cell surface glycoprotein that is known to complex with integrins. This protein appears to promote muscle cell fusion and support myotube maintenance. Also it may be involved in signal transduction. This gene is localized in the tumor-suppressor gene region and thus it is a candidate gene for malignancies.[5]
CD81 interacts directly with immunoglobulin superfamily member 8 (IGSF8,[7]CD316) and CD36. It forms a signal transduction complex with CD19, CD21 and Leu-13 (CD225) on the surface of the B cell.[8] On T cells CD81 associates with CD4 and CD8 and provides a costimulatory signal with CD3.[8]
Clinical significance
This protein plays a critical role in Hepatitis C attachment and/or cell entry by interacting with virus' E1/E2 glycoproteins heterodimer.[9] The large extracellular loop of CD81 binds the hepatitis E2 glycoprotein dimer. HCV-E2 and CD81 binding Kd is 1.8 nM. HCV-E2 engaged CD81 is only 30% internalized after 12hr, suggesting CD81 may be primarily an attachment receptor for HCV.[10]
It also appears to play a role in liver invasion by Plasmodium species.[11] CD81 is required for Plasmodium vivax sporozoite entry into human hepatocytes and for Plasmodium yoelii sporozoite entry into murine hepatocytes.[12]
HIV gag proteins use tetraspanin enriched microdomains (containing minimally CD81, CD82, CD63) as a platform for virion assembly and release. Purified HIV produced by MOLT\HIV cells contains CD81. Anti-CD81 antibodies downregulate HIV production 3 fold, however the CD81 protein free virus is more infectious.[13] Engagement of CD81 lowers the signaling threshold required to trigger T-Cell\CD3 mediated proviral DNA in CD4+ T cells.[14]
CD81 appears to play a role in the pathogenesis of influenza.[15]
^ abLevy S, Todd SC, Maecker HT (1998). "CD81 (TAPA-1): a molecule involved in signal transduction and cell adhesion in the immune system". Annu Rev Immunol. 16: 89–109. doi:10.1146/annurev.immunol.16.1.89. PMID9597125.
^Silvie O, Rubinstein E, Franetich JF, Prenant M, Belnoue E, Rénia L, Hannoun L, Eling W, Levy S, Boucheix C, Mazier D (January 2003). "Hepatocyte CD81 is required for Plasmodium falciparum and Plasmodium yoelii sporozoite infectivity". Nat. Med. 9 (1): 93–6. doi:10.1038/nm808. PMID12483205. S2CID6290736.
^Imai T, Kakizaki M, Nishimura M, Yoshie O (Aug 1995). "Molecular analyses of the association of CD4 with two members of the transmembrane 4 superfamily, CD81 and CD82". J. Immunol. 155 (3): 1229–39. doi:10.4049/jimmunol.155.3.1229. PMID7636191. S2CID32942467.
^Radford KJ, Thorne RF, Hersey P (May 1996). "CD63 associates with transmembrane 4 superfamily members, CD9 and CD81, and with beta 1 integrins in human melanoma". Biochem. Biophys. Res. Commun. 222 (1): 13–8. doi:10.1006/bbrc.1996.0690. PMID8630057.
^Anzai N; Lee Younghee; Youn Byung-S; Fukuda Seiji; Kim Young-June; Mantel Charlie; Akashi Makoto; Broxmeyer Hal E (Jun 2002). "C-kit associated with the transmembrane 4 superfamily proteins constitutes a functionally distinct subunit in human hematopoietic progenitors". Blood. 99 (12): 4413–21. doi:10.1182/blood.V99.12.4413. PMID12036870.
Berditchevski F (2002). "Complexes of tetraspanins with integrins: more than meets the eye". J. Cell Sci. 114 (Pt 23): 4143–51. doi:10.1242/jcs.114.23.4143. PMID11739647.
Nagira M, Imai T, Ishikawa I, et al. (1994). "Mouse homologue of C33 antigen (CD82), a member of the transmembrane 4 superfamily: complementary DNA, genomic structure, and expression". Cell. Immunol. 157 (1): 144–57. doi:10.1006/cimm.1994.1212. PMID8039242.
Virtaneva KI, Emi N, Marken JS, et al. (1994). "Chromosomal localization of three human genes coding for A15, L6, and S5.7 (TAPA1): all members of the transmembrane 4 superfamily of proteins". Immunogenetics. 39 (5): 329–34. doi:10.1007/BF00189229. PMID8168850. S2CID22971645.
Radford KJ, Thorne RF, Hersey P (1996). "CD63 associates with transmembrane 4 superfamily members, CD9 and CD81, and with beta 1 integrins in human melanoma". Biochem. Biophys. Res. Commun. 222 (1): 13–8. doi:10.1006/bbrc.1996.0690. PMID8630057.