Reissner–Nordström metric

In physics and astronomy, the Reissner–Nordström metric is a static solution to the Einstein–Maxwell field equations, which corresponds to the gravitational field of a charged, non-rotating, spherically symmetric body of mass M. The analogous solution for a charged, rotating body is given by the Kerr–Newman metric.

The metric was discovered between 1916 and 1921 by Hans Reissner,[1] Hermann Weyl,[2] Gunnar Nordström[3] and George Barker Jeffery[4] independently.[5]

Metric

In spherical coordinates , the Reissner–Nordström metric (i.e. the line element) is

where

  • is the speed of light
  • is the proper time
  • is the time coordinate (measured by a stationary clock at infinity).
  • is the radial coordinate
  • are the spherical angles
  • is the Schwarzschild radius of the body given by
  • is a characteristic length scale given by
  • is the electric constant.

The total mass of the central body and its irreducible mass are related by[6][7]

The difference between and is due to the equivalence of mass and energy, which makes the electric field energy also contribute to the total mass.

In the limit that the charge (or equivalently, the length scale ) goes to zero, one recovers the Schwarzschild metric. The classical Newtonian theory of gravity may then be recovered in the limit as the ratio goes to zero. In the limit that both and go to zero, the metric becomes the Minkowski metric for special relativity.

In practice, the ratio is often extremely small. For example, the Schwarzschild radius of the Earth is roughly mm (3/8 inch), whereas a satellite in a geosynchronous orbit has an orbital radius that is roughly four billion times larger, at 42164 km (26200 miles). Even at the surface of the Earth, the corrections to Newtonian gravity are only one part in a billion. The ratio only becomes large close to black holes and other ultra-dense objects such as neutron stars.

Charged black holes

Although charged black holes with rQ ≪ rs are similar to the Schwarzschild black hole, they have two horizons: the event horizon and an internal Cauchy horizon.[8] As with the Schwarzschild metric, the event horizons for the spacetime are located where the metric component diverges; that is, where

This equation has two solutions:

These concentric event horizons become degenerate for 2rQ = rs, which corresponds to an extremal black hole. Black holes with 2rQ > rs cannot exist in nature because if the charge is greater than the mass there can be no physical event horizon (the term under the square root becomes negative).[9] Objects with a charge greater than their mass can exist in nature, but they can not collapse down to a black hole, and if they could, they would display a naked singularity.[10] Theories with supersymmetry usually guarantee that such "superextremal" black holes cannot exist.

The electromagnetic potential is

If magnetic monopoles are included in the theory, then a generalization to include magnetic charge P is obtained by replacing Q2 by Q2 + P2 in the metric and including the term P cos θ  in the electromagnetic potential.[clarification needed]

Gravitational time dilation

The gravitational time dilation in the vicinity of the central body is given by which relates to the local radial escape velocity of a neutral particle

Christoffel symbols

The Christoffel symbols with the indices give the nonvanishing expressions

Given the Christoffel symbols, one can compute the geodesics of a test-particle.[11][12]

Tetrad form

Instead of working in the holonomic basis, one can perform efficient calculations with a tetrad.[13] Let be a set of one-forms with internal Minkowski index , such that . The Reissner metric can be described by the tetrad

where . The parallel transport of the tetrad is captured by the connection one-forms . These have only 24 independent components compared to the 40 components of . The connections can be solved for by inspection from Cartan's equation , where the left hand side is the exterior derivative of the tetrad, and the right hand side is a wedge product.

The Riemann tensor can be constructed as a collection of two-forms by the second Cartan equation which again makes use of the exterior derivative and wedge product. This approach is significantly faster than the traditional computation with ; note that there are only four nonzero compared with nine nonzero components of .

Equations of motion

[14]

Because of the spherical symmetry of the metric, the coordinate system can always be aligned in a way that the motion of a test-particle is confined to a plane, so for brevity and without restriction of generality we use θ instead of φ. In dimensionless natural units of G = M = c = K = 1 the motion of an electrically charged particle with the charge q is given by which yields

All total derivatives are with respect to proper time .

Constants of the motion are provided by solutions to the partial differential equation[15] after substitution of the second derivatives given above. The metric itself is a solution when written as a differential equation

The separable equation immediately yields the constant relativistic specific angular momentum a third constant obtained from is the specific energy (energy per unit rest mass)[16]

Substituting and into yields the radial equation

Multiplying under the integral sign by yields the orbital equation

The total time dilation between the test-particle and an observer at infinity is

The first derivatives and the contravariant components of the local 3-velocity are related by which gives the initial conditions

The specific orbital energy and the specific relative angular momentum of the test-particle are conserved quantities of motion. and are the radial and transverse components of the local velocity-vector. The local velocity is therefore

Alternative formulation of metric

The metric can be expressed in Kerr–Schild form like this:

Notice that k is a unit vector. Here M is the constant mass of the object, Q is the constant charge of the object, and η is the Minkowski tensor.

See also

Notes

  1. ^ Reissner, H. (1916). "Über die Eigengravitation des elektrischen Feldes nach der Einsteinschen Theorie". Annalen der Physik. 355 (9): 106–120. Bibcode:1916AnP...355..106R. doi:10.1002/andp.19163550905. ISSN 0003-3804.
  2. ^ Weyl, Hermann (1917). "Zur Gravitationstheorie". Annalen der Physik. 359 (18): 117–145. Bibcode:1917AnP...359..117W. doi:10.1002/andp.19173591804. ISSN 0003-3804.
  3. ^ Nordström, G. (1918). "On the Energy of the Gravitational Field in Einstein's Theory". Koninklijke Nederlandsche Akademie van Wetenschappen Proceedings. 20 (2): 1238–1245. Bibcode:1918KNAB...20.1238N.
  4. ^ Jeffery, G. B. (1921). "The field of an electron on Einstein's theory of gravitation". Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character. 99 (697): 123–134. Bibcode:1921RSPSA..99..123J. doi:10.1098/rspa.1921.0028. ISSN 0950-1207.
  5. ^ Siegel, Ethan (2021-10-13). "Surprise: the Big Bang isn't the beginning of the universe anymore". Big Think. Retrieved 2024-09-03.
  6. ^ Thibault Damour: Black Holes: Energetics and Thermodynamics, S. 11 ff.
  7. ^ Qadir, Asghar (December 1983). "Reissner-Nordstrom repulsion". Physics Letters A. 99 (9): 419–420. Bibcode:1983PhLA...99..419Q. doi:10.1016/0375-9601(83)90946-5.
  8. ^ Chandrasekhar, Subrahmanyan (2009). The mathematical theory of black holes. Oxford classic texts in the physical sciences (Reprinted ed.). Oxford: Clarendon Press. p. 205. ISBN 978-0-19-850370-5. And finally, the fact that the Reissner–Nordström solution has two horizons, an external event horizon and an internal 'Cauchy horizon', provides a convenient bridge to the study of the Kerr solution in the subsequent chapters.
  9. ^ Andrew Hamilton: The Reissner Nordström Geometry (Casa Colorado)
  10. ^ Carter, Brandon (25 October 1968). "Global Structure of the Kerr Family of Gravitational Fields". Physical Review. 174 (5): 1559–1571. doi:10.1103/PhysRev.174.1559. ISSN 0031-899X.
  11. ^ Leonard Susskind: The Theoretical Minimum: Geodesics and Gravity, (General Relativity Lecture 4, timestamp: 34m18s)
  12. ^ Hackmann, Eva; Xu, Hongxiao (2013). "Charged particle motion in Kerr-Newmann space-times". Physical Review D. 87 (12): 124030. arXiv:1304.2142. doi:10.1103/PhysRevD.87.124030. ISSN 1550-7998.
  13. ^ Wald, Robert M. (2009). General relativity (Repr. ed.). Chicago: Univ. of Chicago Press. ISBN 978-0-226-87033-5.
  14. ^ Nordebo, Jonatan. "The Reissner-Nordström metric" (PDF). diva-portal. Retrieved 8 April 2021.
  15. ^ Smith, B. R. (December 2009). "First-order partial differential equations in classical dynamics". American Journal of Physics. 77 (12): 1147–1153. Bibcode:2009AmJPh..77.1147S. doi:10.1119/1.3223358. ISSN 0002-9505.
  16. ^ Misner, Charles W.; Thorne, Kip S.; Wheeler, John Archibald; Kaiser, David; et al. (2017). Gravitation. Princeton, N.J: Princeton University Press. pp. 656–658. ISBN 978-0-691-17779-3. OCLC 1006427790.

References

Read other articles:

2006 São Paulo gubernatorial election ← 2002 1 October 2006 (2006-10-01) 2010 →   Nominee José Serra Aloizio Mercadante Party PSDB PT Running mate Alberto Goldman Nádia Campeão Popular vote 12,381,038 6,771,582 Percentage 57.93% 31.68% Candidate with the most votes per municipality (645):     José Serra (629 municipalities)     Aloizio Mercadante (13 municipalities)   ...

 

Beach in Mangalore, PanamburPanambur BeachBeachClouds over the sea at Panambur BeachLocationPanamburCityMangaloreCountryIndiaLifeguard AvailableYesImportant Events Beach Festival Kite Festival ActivitiesSwimmingParasailingBoat ridesSurfingWater ScootersCamel RidesHorse RidingAT BuggyGovernment • BodyMangalore City CorporationWebsitehttp://www.panamburbeach.com/ Panambur Beach is a beach on the shores of the Arabian Sea in the city of Mangalore in the Indian state of Karnataka. It ...

 

FeuerwehrBelgien Notruf: 112 Personal Aktive(ohne Jugend): 17300 Freiwilligenquote: 71 % Stützpunkte Gesamtanzahl: 270 Die Feuerwehr in Belgien (niederländisch: Brandweerdienst, französisch: Service d'Incendie) ist in Hilfeleistungszonen aufgeteilt, welche die Arbeit der Berufs- und freiwilligen Feuerwehrleute in Belgien organisieren. Hilfeleistungszonen der Feuerwehr in Belgien Inhaltsverzeichnis 1 Allgemeines 2 Ausbildung 3 Gesetzliche Grundlage 4 Geschichte 5 Technik und Einsatztak...

Pour les articles homonymes, voir Vieux-Montréal (homonymie). Vieux-Montréal Vieux-Montréal vu du Vieux-Port Administration Pays Canada Province Québec Municipalité Montréal Statut Quartier Arrondissement Ville-Marie Fondateur Maisonneuve, Jean-Jacques Olier et Jérôme Le Royer Date de fondation 1642 Démographie Gentilé Vieux-Montréalais, Vieux-Montréalaise Langue(s) parlée(s) Français Géographie Coordonnées 45° 30′ 04″ nord, 73° 33′ 22″ ...

 

Wiedenest Stadt Bergneustadt Koordinaten: 51° 2′ N, 7° 41′ O51.0291666666677.6888888888889255Koordinaten: 51° 1′ 45″ N, 7° 41′ 20″ O Höhe: 255 (250–300) m Einwohner: 2846 (31. Mai 2017) Postleitzahl: 51702 Vorwahl: 02261 Karte Lage von Wiedenest in Bergneustadt Luftbild von Wiedenest: Auf dem Bild ist der südwestliche Teil Wiedenests zu sehen. In diesem ältesten Bereich des Ortes befinden sich unter and...

 

Andrew Beirne Andrew Beirne (* 1771 in Dangan, County Roscommon, Irland; † 16. März 1845 in Gainesville, Alabama) war ein US-amerikanischer Politiker. Zwischen 1837 und 1841 vertrat er den Bundesstaat Virginia im US-Repräsentantenhaus. Werdegang Andrew Beirne besuchte die öffentlichen Schulen seiner irischen Heimat und studierte danach an der Trinity University in Dublin. Im Jahr 1793 kam er in die Vereinigten Staaten, wo er sich in Union im heutigen West Virginia niederließ. Dort ...

Battle of TacuarembóPart of the Portuguese conquest of the Banda OrientalDate22 January 1820LocationTacuarembó, UruguayResult Luso-Brazilian victory Annexation of the Banda Oriental by the United Kingdom of Portugal, Brazil and the AlgarvesBelligerents United Kingdom Federal LeagueCommanders and leaders Count of Figueira Andrés LatorrePantaleón Sotelo †Strength 1,200[1]-4,000[2]2 guns 2,000[3]-2,500[1]4 gunsCasualties and losses 6:[4]1 ki...

 

Keuskupan Agung IzmirArchidioecesis Smyrnensisİzmir BaşpiskoposluğuKatolik Katedral Santo YohanesLokasiNegara TurkiProvinsi gerejawiIzmirStatistikPopulasi- Katolik(per 2006)1,950Paroki10InformasiDenominasiKatolik RomaGereja sui iurisGereja LatinRitusRitus RomaPendirian18 Maret 1818KatedralKatedral Santo YohanesPelindungPolikarpusKepemimpinan kiniPausFransiskusUskup AgungMartin KmetecEmeritus Giuseppe Germano Bernardini Uskup Agung Emeritus (1983-2004) Ruggero Franceschini Us...

 

Віденський університет музики й виконавського мистецтва 48°12′06″ пн. ш. 16°23′05″ сх. д. / 48.201806000027772825° пн. ш. 16.384832000027778065° сх. д. / 48.201806000027772825; 16.384832000027778065Координати: 48°12′06″ пн. ш. 16°23′05″ сх. д. / 48.201806000027772825° пн. ш. 16.3848...

この存命人物の記事には検証可能な出典が不足しています。信頼できる情報源の提供に協力をお願いします。存命人物に関する出典の無い、もしくは不完全な情報に基づいた論争の材料、特に潜在的に中傷・誹謗・名誉毀損あるいは有害となるものはすぐに除去する必要があります。出典検索?: ジェロム・レ・バンナ – ニュース · 書籍 · スカラー...

 

François Hédelin François Hédelin, abbé d’Aubignac et de Meymac (* 4. August 1604 in Paris; † 25. Juli 1676 in Nemours, heute im Département Seine-et-Marne) war ein französischer Schriftsteller, Dramaturg, Poet und Theoretiker des französischen Theaters des 17. Jahrhunderts. François Hédelin verfasste eine für das französische Theater des 17. Jahrhunderts wichtige Theorie der aristotelischen drei Einheiten und beschrieb diese 1657 in seinem Hauptwerk La Pratique du Théâtre. ...

 

Turkish footballer and politician (1898–1969) Zeki Rıza Sporel Personal informationDate of birth (1898-02-28)28 February 1898Place of birth Istanbul, Ottoman EmpireDate of death 3 November 1969(1969-11-03) (aged 71)Place of death TurkeyPosition(s) StrikerYouth career1912–1915 FenerbahçeSenior career*Years Team Apps (Gls)1915–1934 Fenerbahçe 352 (470)International career1923–1934 Turkey 16 (15) *Club domestic league appearances and goals Zeki Rıza Sporel (28 February 1898 – ...

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (نوفمبر 2019) الدوري اليوناني 1963–64 تفاصيل الموسم الدوري اليوناني لكرة القدم  النسخة 5،  و28  البلد اليونان  ا...

 

Bridge in Minneapolis, Minnesota This article is about the current bridge. For Bridge 9340, the original bridge, which collapsed in 2007, see I-35W Mississippi River bridge. Saint Anthony Falls BridgeOpening day, September 18, 2008, from south end.Coordinates44°58′44″N 93°14′42″W / 44.97889°N 93.24500°W / 44.97889; -93.24500Carries10 Lanes of I-35W; light-rail or bus-way-ready[1]CrossesMississippi RiverLocaleMinneapolis, Minnesota, U.S.Official name...

 

Sensation that an amputated or missing limb is attached For other uses, see Phantom limb (disambiguation). Medical conditionPhantom limbA cat attempting to use its left foreleg to scoop litter several months after it has been amputatedSpecialtyNeurology A phantom limb is the sensation that an amputated or missing limb is still attached. Approximately 80–100% of individuals with an amputation experience sensations in their amputated limb. However, only a small percentage will experience pain...

Not to be confused with Yan Chai Hospital in Hong Kong, which has the same Chinese name. Hospital in Shanghai, ChinaRenji HospitalEast part of hospitalGeographyLocationHuangpu District, Pudong New Area and Minhang District, Shanghai, ChinaCoordinates31°13′59″N 121°29′02″E / 31.233°N 121.484°E / 31.233; 121.484OrganisationCare systemPublicTypeTeachingAffiliated universityShanghai Jiao Tong University School of MedicineServicesStandardsGrade 3, Class A (Chine...

 

Опис файлу Опис Обкладинка до фільму «Люм'єр і компанія» Джерело Lumière and Company FilmPoster.jpeg (англ. вікі) Час створення 1995 Автор зображення Авторські права належать видавцю фільму або студії, яка його створила. Ліцензія див. нижче Обґрунтування добропорядного використання для...

 

Ocoyoacac Localidad Iglesia de Santa María. Palacio municipal. Iglesia de San Martín Obispo. Plaza de los Insurgentes. Museo José María Luis Mora. OcoyoacacLocalización de Ocoyoacac en México OcoyoacacLocalización de Ocoyoacac en Estado de México Mapa interactivoCoordenadas 19°16′17″N 99°27′24″O / 19.27127, -99.45662Entidad Localidad • País México México • Estado México • Municipio OcoyoacacAltitud   • Media 2601 m s. n. m...

Railway station in Lhasa, Tibet, China 29°38′38″N 90°58′00″E / 29.64389°N 90.96667°E / 29.64389; 90.96667 Lhasa West railway station (simplified Chinese: 拉萨西站; traditional Chinese: 拉薩西站; pinyin: lā sà xī zhàn) is a railway station in Lhasa, Tibet Autonomous Region, People's Republic of China. Schedules This station is a cargo station, no passenger trains stop at here as of July 2006. See also List of stations on Qingzang rail...

 

غودزيلا (مسلسل) Godzilla: The Series غودزيلا غودزيلا (مسلسل) نوع مغامرات العرض الأصلي 12 سبتمبر 1998 – 22 أبريل 2000 عدد الحلقات 40 بث عربي عدة محطات عربية عدد الحلقات المدبلجة 40 تعديل مصدري - تعديل   غودزيلا (بالإنجليزية:Godzilla: The Series) مسلسل كرتوني أمريكي عرض لأول مره على قناة فوكس كيدز في ا...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!