In the limit that the charge (or equivalently, the length scale ) goes to zero, one recovers the Schwarzschild metric. The classical Newtonian theory of gravity may then be recovered in the limit as the ratio goes to zero. In the limit that both and go to zero, the metric becomes the Minkowski metric for special relativity.
In practice, the ratio is often extremely small. For example, the Schwarzschild radius of the Earth is roughly 9 mm (3/8 inch), whereas a satellite in a geosynchronous orbit has an orbital radius that is roughly four billion times larger, at 42164km (26200miles). Even at the surface of the Earth, the corrections to Newtonian gravity are only one part in a billion. The ratio only becomes large close to black holes and other ultra-dense objects such as neutron stars.
Charged black holes
Although charged black holes with rQ ≪ rs are similar to the Schwarzschild black hole, they have two horizons: the event horizon and an internal Cauchy horizon.[8] As with the Schwarzschild metric, the event horizons for the spacetime are located where the metric component diverges; that is, where
This equation has two solutions:
These concentric event horizons become degenerate for 2rQ = rs, which corresponds to an extremal black hole. Black holes with 2rQ > rs cannot exist in nature because if the charge is greater than the mass there can be no physical event horizon (the term under the square root becomes negative).[9] Objects with a charge greater than their mass can exist in nature, but they can not collapse down to a black hole, and if they could, they would display a naked singularity.[10] Theories with supersymmetry usually guarantee that such "superextremal" black holes cannot exist.
If magnetic monopoles are included in the theory, then a generalization to include magnetic charge P is obtained by replacing Q2 by Q2 + P2 in the metric and including the term P cos θdφ in the electromagnetic potential.[clarification needed]
Gravitational time dilation
The gravitational time dilation in the vicinity of the central body is given by
which relates to the local radial escape velocity of a neutral particle
Given the Christoffel symbols, one can compute the geodesics of a test-particle.[11][12]
Tetrad form
Instead of working in the holonomic basis, one can perform efficient calculations with a tetrad.[13] Let be a set of one-forms with internal Minkowski index, such that . The Reissner metric can be described by the tetrad
where . The parallel transport of the tetrad is captured by the connection one-forms. These have only 24 independent components compared to the 40 components of . The connections can be solved for by inspection from Cartan's equation , where the left hand side is the exterior derivative of the tetrad, and the right hand side is a wedge product.
The Riemann tensor can be constructed as a collection of two-forms by the second Cartan equation which again makes use of the exterior derivative and wedge product. This approach is significantly faster than the traditional computation with ; note that there are only four nonzero compared with nine nonzero components of .
Because of the spherical symmetry of the metric, the coordinate system can always be aligned in a way that the motion of a test-particle is confined to a plane, so for brevity and without restriction of generality we use θ instead of φ. In dimensionless natural units of G = M = c = K = 1 the motion of an electrically charged particle with the charge q is given by
which yields
All total derivatives are with respect to proper time .
Constants of the motion are provided by solutions to the partial differential equation[15]
after substitution of the second derivatives given above. The metric itself is a solution when written as a differential equation
The separable equation
immediately yields the constant relativistic specific angular momentum
a third constant obtained from
is the specific energy (energy per unit rest mass)[16]
Substituting and into yields the radial equation
Multiplying under the integral sign by yields the orbital equation
The total time dilation between the test-particle and an observer at infinity is
The first derivatives and the contravariant components of the local 3-velocity are related by
which gives the initial conditions
The specific orbital energy
and the specific relative angular momentum
of the test-particle are conserved quantities of motion. and are the radial and transverse components of the local velocity-vector. The local velocity is therefore
^Nordström, G. (1918). "On the Energy of the Gravitational Field in Einstein's Theory". Koninklijke Nederlandsche Akademie van Wetenschappen Proceedings. 20 (2): 1238–1245. Bibcode:1918KNAB...20.1238N.
^Chandrasekhar, Subrahmanyan (2009). The mathematical theory of black holes. Oxford classic texts in the physical sciences (Reprinted ed.). Oxford: Clarendon Press. p. 205. ISBN978-0-19-850370-5. And finally, the fact that the Reissner–Nordström solution has two horizons, an external event horizon and an internal 'Cauchy horizon', provides a convenient bridge to the study of the Kerr solution in the subsequent chapters.
^Misner, Charles W.; Thorne, Kip S.; Wheeler, John Archibald; Kaiser, David; et al. (2017). Gravitation. Princeton, N.J: Princeton University Press. pp. 656–658. ISBN978-0-691-17779-3. OCLC1006427790.
2006 São Paulo gubernatorial election ← 2002 1 October 2006 (2006-10-01) 2010 → Nominee José Serra Aloizio Mercadante Party PSDB PT Running mate Alberto Goldman Nádia Campeão Popular vote 12,381,038 6,771,582 Percentage 57.93% 31.68% Candidate with the most votes per municipality (645): José Serra (629 municipalities) Aloizio Mercadante (13 municipalities) ...
Beach in Mangalore, PanamburPanambur BeachBeachClouds over the sea at Panambur BeachLocationPanamburCityMangaloreCountryIndiaLifeguard AvailableYesImportant Events Beach Festival Kite Festival ActivitiesSwimmingParasailingBoat ridesSurfingWater ScootersCamel RidesHorse RidingAT BuggyGovernment • BodyMangalore City CorporationWebsitehttp://www.panamburbeach.com/ Panambur Beach is a beach on the shores of the Arabian Sea in the city of Mangalore in the Indian state of Karnataka. It ...
FeuerwehrBelgien Notruf: 112 Personal Aktive(ohne Jugend): 17300 Freiwilligenquote: 71 % Stützpunkte Gesamtanzahl: 270 Die Feuerwehr in Belgien (niederländisch: Brandweerdienst, französisch: Service d'Incendie) ist in Hilfeleistungszonen aufgeteilt, welche die Arbeit der Berufs- und freiwilligen Feuerwehrleute in Belgien organisieren. Hilfeleistungszonen der Feuerwehr in Belgien Inhaltsverzeichnis 1 Allgemeines 2 Ausbildung 3 Gesetzliche Grundlage 4 Geschichte 5 Technik und Einsatztak...
Pour les articles homonymes, voir Vieux-Montréal (homonymie). Vieux-Montréal Vieux-Montréal vu du Vieux-Port Administration Pays Canada Province Québec Municipalité Montréal Statut Quartier Arrondissement Ville-Marie Fondateur Maisonneuve, Jean-Jacques Olier et Jérôme Le Royer Date de fondation 1642 Démographie Gentilé Vieux-Montréalais, Vieux-Montréalaise Langue(s) parlée(s) Français Géographie Coordonnées 45° 30′ 04″ nord, 73° 33′ 22″ ...
Wiedenest Stadt Bergneustadt Koordinaten: 51° 2′ N, 7° 41′ O51.0291666666677.6888888888889255Koordinaten: 51° 1′ 45″ N, 7° 41′ 20″ O Höhe: 255 (250–300) m Einwohner: 2846 (31. Mai 2017) Postleitzahl: 51702 Vorwahl: 02261 Karte Lage von Wiedenest in Bergneustadt Luftbild von Wiedenest: Auf dem Bild ist der südwestliche Teil Wiedenests zu sehen. In diesem ältesten Bereich des Ortes befinden sich unter and...
Andrew Beirne Andrew Beirne (* 1771 in Dangan, County Roscommon, Irland; † 16. März 1845 in Gainesville, Alabama) war ein US-amerikanischer Politiker. Zwischen 1837 und 1841 vertrat er den Bundesstaat Virginia im US-Repräsentantenhaus. Werdegang Andrew Beirne besuchte die öffentlichen Schulen seiner irischen Heimat und studierte danach an der Trinity University in Dublin. Im Jahr 1793 kam er in die Vereinigten Staaten, wo er sich in Union im heutigen West Virginia niederließ. Dort ...
Battle of TacuarembóPart of the Portuguese conquest of the Banda OrientalDate22 January 1820LocationTacuarembó, UruguayResult Luso-Brazilian victory Annexation of the Banda Oriental by the United Kingdom of Portugal, Brazil and the AlgarvesBelligerents United Kingdom Federal LeagueCommanders and leaders Count of Figueira Andrés LatorrePantaleón Sotelo †Strength 1,200[1]-4,000[2]2 guns 2,000[3]-2,500[1]4 gunsCasualties and losses 6:[4]1 ki...
Віденський університет музики й виконавського мистецтва 48°12′06″ пн. ш. 16°23′05″ сх. д. / 48.201806000027772825° пн. ш. 16.384832000027778065° сх. д. / 48.201806000027772825; 16.384832000027778065Координати: 48°12′06″ пн. ш. 16°23′05″ сх. д. / 48.201806000027772825° пн. ш. 16.3848...
François Hédelin François Hédelin, abbé d’Aubignac et de Meymac (* 4. August 1604 in Paris; † 25. Juli 1676 in Nemours, heute im Département Seine-et-Marne) war ein französischer Schriftsteller, Dramaturg, Poet und Theoretiker des französischen Theaters des 17. Jahrhunderts. François Hédelin verfasste eine für das französische Theater des 17. Jahrhunderts wichtige Theorie der aristotelischen drei Einheiten und beschrieb diese 1657 in seinem Hauptwerk La Pratique du Théâtre. ...
Turkish footballer and politician (1898–1969) Zeki Rıza Sporel Personal informationDate of birth (1898-02-28)28 February 1898Place of birth Istanbul, Ottoman EmpireDate of death 3 November 1969(1969-11-03) (aged 71)Place of death TurkeyPosition(s) StrikerYouth career1912–1915 FenerbahçeSenior career*Years Team Apps (Gls)1915–1934 Fenerbahçe 352 (470)International career1923–1934 Turkey 16 (15) *Club domestic league appearances and goals Zeki Rıza Sporel (28 February 1898 – ...
يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (نوفمبر 2019) الدوري اليوناني 1963–64 تفاصيل الموسم الدوري اليوناني لكرة القدم النسخة 5، و28 البلد اليونان ا...
Bridge in Minneapolis, Minnesota This article is about the current bridge. For Bridge 9340, the original bridge, which collapsed in 2007, see I-35W Mississippi River bridge. Saint Anthony Falls BridgeOpening day, September 18, 2008, from south end.Coordinates44°58′44″N 93°14′42″W / 44.97889°N 93.24500°W / 44.97889; -93.24500Carries10 Lanes of I-35W; light-rail or bus-way-ready[1]CrossesMississippi RiverLocaleMinneapolis, Minnesota, U.S.Official name...
Sensation that an amputated or missing limb is attached For other uses, see Phantom limb (disambiguation). Medical conditionPhantom limbA cat attempting to use its left foreleg to scoop litter several months after it has been amputatedSpecialtyNeurology A phantom limb is the sensation that an amputated or missing limb is still attached. Approximately 80–100% of individuals with an amputation experience sensations in their amputated limb. However, only a small percentage will experience pain...
Not to be confused with Yan Chai Hospital in Hong Kong, which has the same Chinese name. Hospital in Shanghai, ChinaRenji HospitalEast part of hospitalGeographyLocationHuangpu District, Pudong New Area and Minhang District, Shanghai, ChinaCoordinates31°13′59″N 121°29′02″E / 31.233°N 121.484°E / 31.233; 121.484OrganisationCare systemPublicTypeTeachingAffiliated universityShanghai Jiao Tong University School of MedicineServicesStandardsGrade 3, Class A (Chine...
Опис файлу Опис Обкладинка до фільму «Люм'єр і компанія» Джерело Lumière and Company FilmPoster.jpeg (англ. вікі) Час створення 1995 Автор зображення Авторські права належать видавцю фільму або студії, яка його створила. Ліцензія див. нижче Обґрунтування добропорядного використання для...
Ocoyoacac Localidad Iglesia de Santa María. Palacio municipal. Iglesia de San Martín Obispo. Plaza de los Insurgentes. Museo José María Luis Mora. OcoyoacacLocalización de Ocoyoacac en México OcoyoacacLocalización de Ocoyoacac en Estado de México Mapa interactivoCoordenadas 19°16′17″N 99°27′24″O / 19.27127, -99.45662Entidad Localidad • País México México • Estado México • Municipio OcoyoacacAltitud • Media 2601 m s. n. m...
Railway station in Lhasa, Tibet, China 29°38′38″N 90°58′00″E / 29.64389°N 90.96667°E / 29.64389; 90.96667 Lhasa West railway station (simplified Chinese: 拉萨西站; traditional Chinese: 拉薩西站; pinyin: lā sà xī zhàn) is a railway station in Lhasa, Tibet Autonomous Region, People's Republic of China. Schedules This station is a cargo station, no passenger trains stop at here as of July 2006. See also List of stations on Qingzang rail...
غودزيلا (مسلسل) Godzilla: The Series غودزيلا غودزيلا (مسلسل) نوع مغامرات العرض الأصلي 12 سبتمبر 1998 – 22 أبريل 2000 عدد الحلقات 40 بث عربي عدة محطات عربية عدد الحلقات المدبلجة 40 تعديل مصدري - تعديل غودزيلا (بالإنجليزية:Godzilla: The Series) مسلسل كرتوني أمريكي عرض لأول مره على قناة فوكس كيدز في ا...