Linearized gravity

In the theory of general relativity, linearized gravity is the application of perturbation theory to the metric tensor that describes the geometry of spacetime. As a consequence, linearized gravity is an effective method for modeling the effects of gravity when the gravitational field is weak. The usage of linearized gravity is integral to the study of gravitational waves and weak-field gravitational lensing.

Weak-field approximation

The Einstein field equation (EFE) describing the geometry of spacetime is given as

where is the Ricci tensor, is the Ricci scalar, is the energy–momentum tensor, is the Einstein gravitational constant, and is the spacetime metric tensor that represents the solutions of the equation.

Although succinct when written out using Einstein notation, hidden within the Ricci tensor and Ricci scalar are exceptionally nonlinear dependencies on the metric tensor that render the prospect of finding exact solutions impractical in most systems. However, when describing systems for which the curvature of spacetime is small (meaning that terms in the EFE that are quadratic in do not significantly contribute to the equations of motion), one can model the solution of the field equations as being the Minkowski metric[note 1] plus a small perturbation term . In other words:

In this regime, substituting the general metric for this perturbative approximation results in a simplified expression for the Ricci tensor:

where is the trace of the perturbation, denotes the partial derivative with respect to the coordinate of spacetime, and is the d'Alembert operator.

Together with the Ricci scalar,

the left side of the field equation reduces to

and thus the EFE is reduced to a linear second order partial differential equation in terms of .

Gauge invariance

The process of decomposing the general spacetime into the Minkowski metric plus a perturbation term is not unique. This is due to that different choices for coordinates may give different forms for . In order to capture this phenomenon, the application of gauge symmetry is introduced.

Gauge symmetries are a mathematical device for describing a system that does not change when the underlying coordinate system is "shifted" by an infinitesimal amount. So although the perturbation metric is not consistently defined between different coordinate systems, the overall system which it describes is.

To capture this formally, the non-uniqueness of the perturbation is represented as being a consequence of the diverse collection of diffeomorphisms on spacetime that leave sufficiently small. Therefore, it is required that be defined in terms of a general set of diffeomorphisms, then select the subset of these that preserve the small scale that is required by the weak-field approximation. One may thus define to denote an arbitrary diffeomorphism that maps the flat Minkowski spacetime to the more general spacetime represented by the metric . With this, the perturbation metric may be defined as the difference between the pullback of and the Minkowski metric:

The diffeomorphisms may thus be chosen such that .

Given then a vector field defined on the flat background spacetime, an additional family of diffeomorphisms may be defined as those generated by and parameterized by . These new diffeomorphisms will be used to represent the coordinate transformations for "infinitesimal shifts" as discussed above. Together with , a family of perturbations is given by

Therefore, in the limit ,

where is the Lie derivative along the vector field .

The Lie derivative works out to yield the final gauge transformation of the perturbation metric :

which precisely define the set of perturbation metrics that describe the same physical system. In other words, it characterizes the gauge symmetry of the linearized field equations.

Choice of gauge

By exploiting gauge invariance, certain properties of the perturbation metric can be guaranteed by choosing a suitable vector field .

Transverse gauge

To study how the perturbation distorts measurements of length, it is useful to define the following spatial tensor:

(Note that the indices span only spatial components: ). Thus, by using , the spatial components of the perturbation can be decomposed as

where .

The tensor is, by construction, traceless and is referred to as the strain since it represents the amount by which the perturbation stretches and contracts measurements of space. In the context of studying gravitational radiation, the strain is particularly useful when utilized with the transverse gauge. This gauge is defined by choosing the spatial components of to satisfy the relation

then choosing the time component to satisfy

After performing the gauge transformation using the formula in the previous section, the strain becomes spatially transverse:

with the additional property:

Synchronous gauge

The synchronous gauge simplifies the perturbation metric by requiring that the metric not distort measurements of time. More precisely, the synchronous gauge is chosen such that the non-spatial components of are zero, namely

This can be achieved by requiring the time component of to satisfy

and requiring the spatial components to satisfy

Harmonic gauge

The harmonic gauge (also referred to as the Lorenz gauge[note 2]) is selected whenever it is necessary to reduce the linearized field equations as much as possible. This can be done if the condition

is true. To achieve this, is required to satisfy the relation

Consequently, by using the harmonic gauge, the Einstein tensor reduces to

Therefore, by writing it in terms of a "trace-reversed" metric, , the linearized field equations reduce to

This can be solved exactly, to produce the wave solutions that define gravitational radiation.

See also

Notes

  1. ^ This assumes that the background spacetime is flat. Perturbation theory applied in a spacetime that is already curved can work just as well when this term is replaced with the metric representing the curved background.
  2. ^ Not to be confused with Lorentz.

Further reading

  • Sean M. Carroll (2003). Spacetime and Geometry, an Introduction to General Relativity. Pearson. ISBN 978-0805387322.

Read other articles:

Artikel ini berisi konten yang ditulis dengan gaya sebuah iklan. Bantulah memperbaiki artikel ini dengan menghapus konten yang dianggap sebagai spam dan pranala luar yang tidak sesuai, dan tambahkan konten ensiklopedis yang ditulis dari sudut pandang netral dan sesuai dengan kebijakan Wikipedia. (Februari 2023) PT Astro Technologies IndonesiaJenisSwastaIndustriPerdaganganSitus WebAplikasiDidirikanSeptember 2021PendiriVincent Tjendra (CEO)Jessica Stephanie Jap (COO)Sherlyn Gautama (co-founder)...

 

Historic luxury hotel in London, England This article is about the London hotel. For other uses, see Savoy Hotel (disambiguation). Savoy HotelThe main entrance to the Savoy from StrandHotel chainFairmont Hotels and ResortsGeneral informationStatusCompletedTypeHotelArchitectural styleArt DecoAddressStrandCity of WestminsterWC2R 0EZTown or cityLondonCountryEnglandNamed forLiberty of the SavoyConstruction started1886Opened6 August 1889; 134 years ago (1889-08-06)OwnerKingdom Ho...

 

Avant la révolution islamique de 1979, le sujet de la transidentité en Iran n'avait jamais été officiellement traité par le gouvernement. Cependant, au début des années 1980, les personnes transgenres ont été officiellement reconnues par le gouvernement et autorisées à bénéficier d'opérations chirurgicales. Histoire Avant 1979 En 1963, l'Ayatollah Rouhollah Khomeini a écrit un livre dans lequel il dit qu'il n'existe aucune restriction religieuse vis-à-vis de la chirurgie corre...

District in Zürich, SwitzerlandKreis 11 District of the city of ZürichDistrictCoordinates: 47°25′23″N 8°31′16″E / 47.423°N 8.521°E / 47.423; 8.521CountrySwitzerlandCantonZürichCityZürichArea • Total13.4 km2 (5.2 sq mi)Population (31. Mar. 2012) • Total68,239 • Density5,085/km2 (13,170/sq mi)District Number11QuartersAffolternOerlikonSeebach District 11 is the most northern and the most populous...

 

Untuk universitas di Taiwan (Republik Tiongkok), lihat Universitas Nasional Tsing Hua. Universitas Tsinghua清华大学Gedung Utama Universitas TsinghuaMoto自强不息、厚德载物[1](Disiplin diri, komitmen dan wawasan yang luas)Moto dalam bahasa InggrisSelf-Discipline and Social Commitment[2]JenisUniversitas negeriDidirikan1911Dana abadi$4,23 miliar (2018)[3]PresidenQiu Yong[4]Sekretaris PKTChen Xu[5] (Ketua)Staf akademik3.565[6]Staf a...

 

A virtual touch screen (VTS) is a user interface system that augments virtual objects into reality either through a projector or optical display using sensors to track a person's interaction with the object. For instance, using a display and a rear projector system a person could create images that look three-dimensional and appear to float in midair.[1] Some systems utilize an optical head-mounted display to augment the virtual objects onto the transparent display utilizing sensors t...

Season of television series Love Games: Bad Girls Need Love TooSeason 1Country of originUnited StatesNo. of episodes8ReleaseOriginal networkOxygenOriginal releaseMarch 16 (2010-03-16) –May 4, 2010 (2010-05-04)Season chronologyNext →Season 2 The first season of Love Games: Bad Girls Need Love Too premiered on March 16, 2010, after the fourth season Bad Girls Club reunion.[1] It is the second spin-off to Bad Girls Club. The first season ran for eight episodes and...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Softball Australia – news · newspapers · books · scholar · JSTOR (March 2009) (Learn how and when to remove this template message) Softball AustraliaSportSoftballJurisdictionAustraliaFounded1938AffiliationWorld Baseball Softball ConfederationRegional affiliatio...

 

Old Friends (Simon and Garfunkel album) redirects here. For the 2003 concert album, see Old Friends: Live on Stage. 1997 box set by Simon and GarfunkelOld FriendsBox set by Simon and GarfunkelReleasedNovember 4, 1997Recorded1964–1975GenreFolk rockLabelColumbia/LegacyProducerVariousSimon and Garfunkel chronology The Definitive Simon and Garfunkel(1994) Old Friends(1997) The Best of Simon and Garfunkel(1999) Professional ratingsReview scoresSourceRatingAllMusic[1] Old Friends ...

圣嘉勒堂 Santa Chiara a Vigna Clara (意大利文)S. Clarae ad Vineam Claram (拉丁文)基本信息位置意大利罗马坐标41°56′52.88″N 12°27′22.72″E / 41.9480222°N 12.4563111°E / 41.9480222; 12.4563111坐标:41°56′52.88″N 12°27′22.72″E / 41.9480222°N 12.4563111°E / 41.9480222; 12.4563111宗教罗马天主教开光1962年12月25日教会地位领衔堂区领导温科·普利奇官方网站Official websi...

 

ワルシャワ・シルドミエシチェ駅 駅舎 Warszawa Śródmieście ◄ワルシャワ・オホタ (0.907 km) (1.289 km) ワルシャワ・ポビシレ►所在地 マゾフシェ県ワルシャワ市シルドミエシチェ区北緯52度13分45.61秒 東経21度0分26.96秒 / 北緯52.2293361度 東経21.0074889度 / 52.2293361; 21.0074889 (ワルシャワ・シルドミエシチェ駅)所属事業者 ポーランド国鉄(PKP)...

 

Human settlement in EnglandBurcottA farm on the corner in Burcott, just south of Bierton, 2006BurcottLocation within BuckinghamshireOS grid referenceSP8415Civil parishBiertonUnitary authorityBuckinghamshireCeremonial countyBuckinghamshireRegionSouth EastCountryEnglandSovereign stateUnited KingdomPost townAYLESBURYPostcode districtHP22Dialling code01296PoliceThames ValleyFireBuckinghamshireAmbulanceSouth Central UK ParliamentAylesbury List of places UK E...

Aljona Lanskaja (2011) Aljona Lanskaja (belarussisch Алёна Ланская, * 9. September 1985 in Mahiljou) ist eine belarussische Popsängerin.[1] Inhaltsverzeichnis 1 Leben und Karriere 2 Diskografie 3 Weblinks 4 Einzelnachweise Leben und Karriere Die schon vorher bei Gesangswettbewerben ausgezeichnete Sängerin gewann per SMS-Voting die Vorentscheidungsshow zum Eurovision Song Contest 2012 in Baku. Mit ihrem Popsong All My Life setzte sie sich gegen vier Mitbewerber durch. Als...

 

Scottish swimmer Catherine GibsonGibson in 1946Personal informationFull nameCatherine Gibson BrownNicknameCathieNational team Great BritainBorn(1931-03-21)21 March 1931Motherwell, ScotlandDied25 June 2013(2013-06-25) (aged 82)KirkcaldySportSportSwimmingStrokesFreestyle, backstroke Medal record Representing  United Kingdom Olympic Games 1948 London 400 m freestyle European Championships (LC) 1947 Monte Carlo 100 m backstroke 1947 Monte Carlo 400 m freestyle 1947 Monte ...

 

Series of intense solar storms in 2003 Halloween solar storms, 2003Composite image showing aurorae over northern Europe, taken by DMSP on October 30, 2003 TypeGeomagnetic stormFormedOctober 2003 (2003-10)DissipatedNovember 2003 (2003-11) DamageElectrical faults and wear to various satellitesPower outagesSatellite communications blackouts; localized power outage in SwedenAreas affectedWorldwidePart of Solar cycle 23 The Halloween solar storms were a series of solar storms i...

Capilla de Bischwind. La Capilla de Bischwind (St. Maria, Helferin der Christen en alemán) se ubica en la localidad de Bischwind, distante cerca 5 km de Gerolzhofen en la Baja Franconia de Baviera (Alemania). La capilla católica está dedicada a la Virgen María Auxiliadora y constituye un lugar de peregrinación en Baviera. Su construcción fue promovida por un soldado bávaro quien durante la guerra con los turcos ofreció edificar una capilla en caso de regresar con vida a su tierra nata...

 

Linzer Orgeltabulatur The Linzer Orgeltabulatur is an emblematic organ tablature of the early baroque era. Compiled in Linz, Austria, between 1611 and 1613, it is presently held by the Oberösterreichische Landesmuseum in this same city (catalogue no. 9647, MusHS. 3). Its music Its remarkable feature is its musical content, which, as opposed to most of the organ books of its time, is not meant to be performed in the church, but rather in a secular, domestic setting. Indeed, the names of the p...

 

Website related to the spiritual teacher Osho Osho TimesPublisherOsho International Foundation[1]FoundedJanuary 1975[citation needed] (then known as Rajneesh Times)[citation needed]Based inPune, IndiaWebsiteoshotimes.com Osho Times is a website on themes related to the spiritual teacher Osho (or Bhagwan Shree Rajneesh), and is published by the Osho International Foundation.[1] Background Originally a printed monthly magazine published in Hindi and English.[...

Ducks performing allelomimetic behavior with feeding behaviors Allelomimetic behavior or allomimetic behavior is a range of activities in which the performance of a behavior increases the probability of that behavior being performed by other nearby animals. Allelomimetic behavior is sometimes called contagious behavior and has strong components of social facilitation, imitation, and group coordination. It is usually considered to occur between members of the same species. An alternate definit...

 

Mimpi ManisGenre Drama Roman Drama Musikal PembuatMD EntertainmentDitulis olehDono IndartoSkenarioDono IndartoSutradara Gul Khan Rama Junarko Pengarah kreatifShania PunjabiPemeran Dewi Perssik Iqbal Pakula Julia Perez Aditya Herpavi Rachman Eva Anindita Thalita Latief Arief Rivan Debby Cynthia Dewi Yati Surachman Elsye Virgita Habibi Yayuk Suseno Pierre Rolland Ronald Gustav Penggubah lagu temaDewi PerssikLagu pembukaMimpi Manis — Dewi PerssikLagu penutup Khayalan Anak Perawan —Dewi Perss...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!