Gravitational field

Representation of the gravitational field of Earth and Moon combined (not to scale). Vector field (blue) and its associated scalar potential field (red). Point P between earth and moon is the point of equilibrium.

In physics, a gravitational field or gravitational acceleration field is a vector field used to explain the influences that a body extends into the space around itself.[1] A gravitational field is used to explain gravitational phenomena, such as the gravitational force field exerted on another massive body. It has dimension of acceleration (L/T2) and it is measured in units of newtons per kilogram (N/kg) or, equivalently, in meters per second squared (m/s2).

In its original concept, gravity was a force between point masses. Following Isaac Newton, Pierre-Simon Laplace attempted to model gravity as some kind of radiation field or fluid,[citation needed] and since the 19th century, explanations for gravity in classical mechanics have usually been taught in terms of a field model, rather than a point attraction. It results from the spatial gradient of the gravitational potential field.

In general relativity, rather than two particles attracting each other, the particles distort spacetime via their mass, and this distortion is what is perceived and measured as a "force".[citation needed] In such a model one states that matter moves in certain ways in response to the curvature of spacetime,[2] and that there is either no gravitational force,[3] or that gravity is a fictitious force.[4]

Gravity is distinguished from other forces by its obedience to the equivalence principle.

Classical mechanics

In classical mechanics, a gravitational field is a physical quantity.[5] A gravitational field can be defined using Newton's law of universal gravitation. Determined in this way, the gravitational field g around a single particle of mass M is a vector field consisting at every point of a vector pointing directly towards the particle. The magnitude of the field at every point is calculated by applying the universal law, and represents the force per unit mass on any object at that point in space. Because the force field is conservative, there is a scalar potential energy per unit mass, Φ, at each point in space associated with the force fields; this is called gravitational potential.[6] The gravitational field equation is[7] where F is the gravitational force, m is the mass of the test particle, R is the radial vector of the test particle relative to the mass (or for Newton's second law of motion which is a time dependent function, a set of positions of test particles each occupying a particular point in space for the start of testing), t is time, G is the gravitational constant, and is the del operator.

This includes Newton's law of universal gravitation, and the relation between gravitational potential and field acceleration. d2R/dt2 and F/m are both equal to the gravitational acceleration g (equivalent to the inertial acceleration, so same mathematical form, but also defined as gravitational force per unit mass[8]). The negative signs are inserted since the force acts antiparallel to the displacement. The equivalent field equation in terms of mass density ρ of the attracting mass is: which contains Gauss's law for gravity, and Poisson's equation for gravity. Newton's law implies Gauss's law, but not vice versa; see Relation between Gauss's and Newton's laws.

These classical equations are differential equations of motion for a test particle in the presence of a gravitational field, i.e. setting up and solving these equations allows the motion of a test mass to be determined and described.

The field around multiple particles is simply the vector sum of the fields around each individual particle. A test particle in such a field will experience a force that equals the vector sum of the forces that it would experience in these individual fields. This is[9] i.e. the gravitational field on mass mj is the sum of all gravitational fields due to all other masses mi, except the mass mj itself. Ri is the position vector of the gravitating particle i, and R is that of the test particle.

General relativity

In general relativity, the Christoffel symbols play the role of the gravitational force field and the metric tensor plays the role of the gravitational potential.

In general relativity, the gravitational field is determined by solving the Einstein field equations[10] where T is the stress–energy tensor, G is the Einstein tensor, and κ is the Einstein gravitational constant. The latter is defined as κ = 8πG/c4, where G is the Newtonian constant of gravitation and c is the speed of light.

These equations are dependent on the distribution of matter, stress and momentum in a region of space, unlike Newtonian gravity, which is depends on only the distribution of matter. The fields themselves in general relativity represent the curvature of spacetime. General relativity states that being in a region of curved space is equivalent to accelerating up the gradient of the field. By Newton's second law, this will cause an object to experience a fictitious force if it is held still with respect to the field. This is why a person will feel himself pulled down by the force of gravity while standing still on the Earth's surface. In general the gravitational fields predicted by general relativity differ in their effects only slightly from those predicted by classical mechanics, but there are a number of easily verifiable differences, one of the most well known being the deflection of light in such fields.

Embedding diagram

Embedding diagrams are three dimensional graphs commonly used to educationally illustrate gravitational potential by drawing gravitational potential fields as a gravitational topography, depicting the potentials as so-called gravitational wells, sphere of influence.

See also

References

  1. ^ Feynman, Richard (1970). The Feynman Lectures on Physics. Vol. I. Addison Wesley Longman. ISBN 978-0-201-02115-8.
  2. ^ Geroch, Robert (1981). General Relativity from A to B. University of Chicago Press. p. 181. ISBN 978-0-226-28864-2.
  3. ^ Grøn, Øyvind; Hervik, Sigbjørn (2007). Einstein's General Theory of Relativity: with Modern Applications in Cosmology. Springer Japan. p. 256. ISBN 978-0-387-69199-2.
  4. ^ Foster, J.; Nightingale, J. D. (2006). A Short Course in General Relativity (3 ed.). Springer Science & Business. p. 55. ISBN 978-0-387-26078-5.
  5. ^ Feynman, Richard (1970). The Feynman Lectures on Physics. Vol. II. Addison Wesley Longman. ISBN 978-0-201-02115-8. A 'field' is any physical quantity which takes on different values at different points in space.
  6. ^ Forshaw, J. R.; Smith, A. G. (2009). Dynamics and Relativity. Wiley. ISBN 978-0-470-01460-8.[page needed]
  7. ^ Lerner, R. G.; Trigg, G. L., eds. (1991). Encyclopaedia of Physics (2nd ed.). Wiley-VCH. ISBN 978-0-89573-752-6. p. 451
  8. ^ Whelan, P. M.; Hodgeson, M. J. (1978). Essential Principles of Physics (2nd ed.). John Murray. ISBN 978-0-7195-3382-2.[page needed]
  9. ^ Kibble, T. W. B. (1973). Classical Mechanics. European Physics Series (2nd ed.). UK: McGraw Hill. ISBN 978-0-07-084018-8.[page needed]
  10. ^ Wheeler, J. A.; Misner, C.; Thorne, K. S. (1973). Gravitation. W. H. Freeman & Co. p. 404. ISBN 978-0-7167-0344-0.

Read other articles:

اضغط هنا للاطلاع على كيفية قراءة التصنيف الأذينة الأذينة الجَنَبية المرتبة التصنيفية جنس[1]  التصنيف العلمي النطاق: حقيقيات النوى المملكة: النباتات الفرقة العليا: نباتات الأرض القسم: النباتات الوعائية الشعبة: مغطاة البذور الطائفة: ثنائيات الفلقة الرتبة: الشفويات Lami...

 

Манія — термін, який має кілька значень. Ця сторінка значень містить посилання на статті про кожне з них.Якщо ви потрапили сюди за внутрішнім посиланням, будь ласка, поверніться та виправте його так, щоб воно вказувало безпосередньо на потрібну статтю.@ пошук посилань сам...

 

Foldable military cap Senior Royal Air Force and United States Air Force officers wearing flight caps German Air Force Garrison cap (Schiffchen little boat) from 1962 with flaps up (top) and flaps folded down (bottom) A side cap is a military cap that can be folded flat when not being worn. It is also known as a garrison cap or flight cap in the United States, wedge cap in Canada, or field service cap in the United Kingdom;[1] or in vulgar slang as a cunt cap.[2][3] ...

Place in Carinthia, SloveniaTolsti Vrh pri Ravnah na KoroškemTolsti Vrh pri Ravnah na KoroškemLocation in SloveniaCoordinates: 46°33′53.14″N 14°57′57.07″E / 46.5647611°N 14.9658528°E / 46.5647611; 14.9658528Country SloveniaTraditional regionCarinthiaStatistical regionCarinthiaMunicipalityRavne na KoroškemArea • Total12.27 km2 (4.74 sq mi)Elevation587.5 m (1,927.5 ft)Population (2002) • Total825[1&...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (مارس 2019) بوب سوندرز   معلومات شخصية الميلاد 22 يناير 1929  كيويتمان  الوفاة 23 أكتوبر 2016 (87 سنة)   غينزفيل  مواطنة الولايات المتحدة  الحياة العملية المهنة سياس

 

Ананьївський повіт Губернія Херсонська губерніяЦентр АнаньївСтворений 1834 Ананьївський повіт — історична адміністративно-територіальна одиниця Херсонської губернії з центром в місті Ананьїв. Повіт створено царським указом 1834 року. В 1887 році в повіті крім міста Ана�...

Haute Matsiatra adalah sebuah kawasan di Madagaskar. Kawasan tersebut berbatasan dengan kawasan Amoron'i Mania di bagian utara, Vatovavy-Fitovinany di bagian timur, Ihorombe di bagian selatan dan Atsimo-Andrefana di bagian barat. Ibu kota kawasan tersebut adalah Fianarantsoa, populasinya diperkirakan berjumlah sekitar 1,131,700 pada 2014. Kawasan tersebut memiliki luas 21.080 km2 (8.139 sq mi).[1] Referensi ^ Ralison, Eliane; Goossens, Frans. Madagascar: Profil des marc...

 

Stasiun Ichinohe一戸駅Stasiun Ichinohe pada Mei 2008LokasiSaihoji Inari, Ichinohe-machi, Ninohe-gun, Iwate-ken 028-5301JepangKoordinat40°12′36″N 141°17′51″E / 40.210108°N 141.297417°E / 40.210108; 141.297417Pengelola Iwate Galaxy Railway CompanyJalur■ Iwate Ginga Railway LineLetak dari pangkal64.5 km dari MoriokaJumlah peron1 peron pulauJumlah jalur2KonstruksiJenis strukturAtas tanahInformasi lainStatusMemiliki stafSitus webSitus web resmiSejarahDibuka...

 

Akademi Teknologi Bank Darah SurakartaNama lainAkbara SurakartaJenisPerguruan Tinggi SwastaDidirikan9 Juni 2016Direkturdr. Titis Wahyuono, M.Si.AlamatJl. Sumbing Raya, Mojosongo, Jebres, Kota Surakarta, Jawa Tengah, 57127, IndonesiaBahasaBahasa IndonesiaSitus webwww.akbara.ac.id Akademi Teknologi Bank Darah Surakarta (disingkat Akbara) adalah salah satu perguruan tinggi swasta di Indonesia yang berlokasi di Kota Surakarta, Provinsi Jawa Tengah. Universitas ini dikelola oleh Yayasan Peduli Man...

У Вікіпедії є статті про інші значення цього терміна: Лівий берег. «Лівий берег» Повна назва Футбольний клуб«Лівий берег» (Київ) Засновано 2017 Населений пункт Київ, Україна Стадіон Арена «Лівий берег» Вміщує 4700 Президент Микола Лавренко Почесний президент Микола Павлов Г...

 

1993 single by Captain Hollywood ProjectOnly With YouSingle by Captain Hollywood Projectfrom the album Love Is Not Sex B-sideRemixReleased20 December 1993GenreEurodanceLength3:52LabelBlow UpSongwriter(s) Oliver Reinecke Giora Schein Nosie Katzmann Tony Dawson Harrison Dietmar Stehle Producer(s)CyborgCaptain Hollywood Project singles chronology More and More (1992) Only With You (1993) All I Want (1993) Music videoOnly with You on YouTube Only With You is a song recorded by German musician kno...

 

Canadian TV series or program SidekickGenre Comedy Action/Adventure Superhero Slapstick Created by Todd Kauffman Joey So Directed by Joey So (Season 1–2) Kerry Sargent (Season 2–3) Voices of Miklos Perlus Christian Potenza Denise Oliver Stephanie Anne Mills Ron Pardo Tony Daniels Theme music composerWilliam Kevin AndersonComposersDon BreithauptAnthony VanderburghCountry of originCanadaNo. of seasons3No. of episodes52 (104 segments) (list of episodes)ProductionExecutive producersJoey ...

2012 American documentary film directed by R. J. Cutler Can't Stand Losing You: Surviving the PolicePosterDirected byAndy GrieveBased onOne Train Later: A Memoir by Andy SummersProduced by Nicolas Cage Norman Golightly William J. Immerman Andy Summers Bob Yari Starring Stewart Copeland Sting Andy Summers CinematographyTom HurwitzEdited byAndy GrieveMusic byThe PoliceProductioncompanies Bob Yari Productions Saturn Films Public Road Productions Distributed byCinema Libre StudioRelease date Nove...

 

Athletics at the2019 Summer UniversiadeTrack events100 mmenwomen200 mmenwomen400 mmenwomen800 mmenwomen1500 mmenwomen5000 mmenwomen10,000 mmenwomen100 m hurdleswomen110 m hurdlesmen400 m hurdlesmenwomen3000 msteeplechasemenwomen4×100 m relaymenwomen4×400 m relaymenwomenRoad eventsHalf marathonmenwomen20 km walkmenwomenField eventsHigh jumpmenwomenPole vaultmenwomenLong jumpmenwomenTriple jumpmenwomenShot putmenwomenDiscus throwmenwomenHammer throwmenwomenJavelin throwmenwomenCombined events...

 

Circassian tribe Not to be confused with Kabar. KabardiansКъэбэрдэй АдыгэFlag of KabardiaCircassian FlagTotal population~1,628,500 Kabardian dialect speakers[1][2]Regions with significant populationsTurkeyMore than 1,000,000[3]Russia590,010 (2010 census)[4]  Kabardino-Balkaria498,702  Karachay-Cherkessia56,466LanguagesKabardian, Russian, TurkishReligionPredominantly Sunni Islam[5][6]Minority Eastern Orthodox Chu...

Posisi teratai Padmasana (Dewanagari: पद्मासन; ,IAST: padmāsana,; [pɐd̪mɑːs̪ɐn̪ɐ]; arti harfiah: posisi teratai)[1] merupakan sebuah posisi duduk asana dengan menyilangkan kaki dengan menempatkan satu kaki (untuk setengah teratai) atau kedua kaki (untuk teratai penuh) pada paha yang berlawanan. Posisi duduk ini biasanya dilakukan pada kegiatan meditasi dalam kepercayaan India. Seperti halnya seperti posisi duduk asana lainnya, posisi duduk ini dil...

 

Piñeiros Vista de la marquesina del apeadero, con la señalización de la extinta FEVE.UbicaciónCoordenadas 43°30′35″N 8°11′02″O / 43.509722, -8.183889Municipio NarónDatos de la estaciónPunto kilométrico 5,470Código 05105N.º de andenes 1N.º de vías 1Propietario AdifOperador Renfe Cercanías AMTráfico actual Ver salidas y llegadasServicios detalladosRegionales Ferrol - Oviedo: Cercanías Cercanías Ferrol: [editar datos en Wikidata] La estación de...

 

This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: The Great Unravel – news · newspapers · books · scholar · JSTOR (June 2019) (Learn how and when to remove this template message) 2008 studio album by Gandalf Murphy and the Slambovian Circus of DreamsThe Great UnravelStudio album by Gandalf Murphy and the Slambovian Circ...

American television anthology series This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Panic! TV series – news · newspapers · books · scholar · JSTOR (May 2019) (Learn how and when to remove this template message) Ronnie Burns and Robert Vaughn in episode Double Identity (1958) Panic!, broadcast as No War...

 

NGC 1324   الكوكبة النهر[1]  رمز الفهرس NGC 1324 (الفهرس العام الجديد)IRAS F03225-0555 (IRAS)MCG-01-09-038 (فهرس المجرات الموروفولوجي)IRAS 03225-0555 (IRAS)PGC 12772 (فهرس المجرات الرئيسية)2MASX J03250169-0544452 (Two Micron All Sky Survey, Extended source catalogue)GSC 04715-01092 (دليل النجم المفهرس)AGC 430240 (Arecibo General Catalog)6dFGS gJ032501.7-054445 (6dF Galaxy Survey)...