Raychaudhuri equation

In general relativity, the Raychaudhuri equation, or Landau–Raychaudhuri equation,[1] is a fundamental result describing the motion of nearby bits of matter.

The equation is important as a fundamental lemma for the Penrose–Hawking singularity theorems and for the study of exact solutions in general relativity, but has independent interest, since it offers a simple and general validation of our intuitive expectation that gravitation should be a universal attractive force between any two bits of mass–energy in general relativity, as it is in Newton's theory of gravitation.

The equation was discovered independently by the Indian physicist Amal Kumar Raychaudhuri[2] and the Soviet physicist Lev Landau.[3]

Mathematical statement

Given a timelike unit vector field (which can be interpreted as a family or congruence of nonintersecting world lines via the integral curve, not necessarily geodesics), Raychaudhuri's equation can be written

where

are (non-negative) quadratic invariants of the shear tensor

and the vorticity tensor

respectively. Here,

is the expansion tensor, is its trace, called the expansion scalar, and

is the projection tensor onto the hyperplanes orthogonal to . Also, dot denotes differentiation with respect to proper time counted along the world lines in the congruence. Finally, the trace of the tidal tensor can also be written as

This quantity is sometimes called the Raychaudhuri scalar.

Intuitive significance

The expansion scalar measures the fractional rate at which the volume of a small ball of matter changes with respect to time as measured by a central comoving observer (and so it may take negative values). In other words, the above equation gives us the evolution equation for the expansion of the timelike congruence. If the derivative (with respect to proper time) of this quantity turns out to be negative along some world line (after a certain event), then any expansion of a small ball of matter (whose center of mass follows the world line in question) must be followed by recollapse. If not, continued expansion is possible.

The shear tensor measures any tendency of an initially spherical ball of matter to become distorted into an ellipsoidal shape. The vorticity tensor measures any tendency of nearby world lines to twist about one another (if this happens, our small blob of matter is rotating, as happens to fluid elements in an ordinary fluid flow which exhibits nonzero vorticity).

The right hand side of Raychaudhuri's equation consists of two types of terms:

  1. terms which promote (re)-collapse
    • initially nonzero expansion scalar,
    • nonzero shearing,
    • positive trace of the tidal tensor; this is precisely the condition guaranteed by assuming the strong energy condition, which holds for the most important types of solutions, such as physically reasonable fluid solutions,
  2. terms which oppose (re)-collapse
    • nonzero vorticity, corresponding to Newtonian centrifugal forces,
    • positive divergence of the acceleration vector (e.g., outward pointing acceleration due to a spherically symmetric explosion, or more prosaically, due to body forces on fluid elements in a ball of fluid held together by its own self-gravitation).

Usually one term will win out. However, there are situations in which a balance can be achieved. This balance may be:

  • stable: in the case of hydrostatic equilibrium of a ball of perfect fluid (e.g. in a model of a stellar interior), the expansion, shear, and vorticity all vanish, and a radial divergence in the acceleration vector (the necessary body force on each blob of fluid being provided by the pressure of surrounding fluid) counteracts the Raychaudhuri scalar, which for a perfect fluid is in geometrized units. In Newtonian gravitation, the trace of the tidal tensor is ; in general relativity, the tendency of pressure to oppose gravity is partially offset by this term, which under certain circumstances can become important.
  • unstable: for example, the world lines of the dust particles in the Gödel solution have vanishing shear, expansion, and acceleration, but constant vorticity just balancing a constant Raychuadhuri scalar due to nonzero vacuum energy ("cosmological constant").

Focusing theorem

Suppose the strong energy condition holds in some region of our spacetime, and let be a timelike geodesic unit vector field with vanishing vorticity, or equivalently, which is hypersurface orthogonal. For example, this situation can arise in studying the world lines of the dust particles in cosmological models which are exact dust solutions of the Einstein field equation (provided that these world lines are not twisting about one another, in which case the congruence would have nonzero vorticity).

Then Raychaudhuri's equation becomes

Now the right hand side is always negative or zero, so the expansion scalar never increases in time.

Since the last two terms are non-negative, we have

Integrating this inequality with respect to proper time gives

If the initial value of the expansion scalar is negative, this means that our geodesics must converge in a caustic ( goes to minus infinity) within a proper time of at most after the measurement of the initial value of the expansion scalar. This need not signal an encounter with a curvature singularity, but it does signal a breakdown in our mathematical description of the motion of the dust.

Optical equations

There is also an optical (or null) version of Raychaudhuri's equation for null geodesic congruences.

.

Here, the hats indicate that the expansion, shear and vorticity are only with respect to the transverse directions. When the vorticity is zero, then assuming the null energy condition, caustics will form before the affine parameter reaches .

Applications

The event horizon is defined as the boundary of the causal past of null infinity. Such boundaries are generated by null geodesics. The affine parameter goes to infinity as we approach null infinity, and no caustics form until then. So, the expansion of the event horizon has to be nonnegative. As the expansion gives the rate of change of the logarithm of the area density, this means the event horizon area can never go down, at least classically, assuming the null energy condition.

See also

Notes

  1. ^ Tahim, M. O.; Landim, R. R.; Almeida, C. A. S. (2007). "Spacetime as a deformable solid". arXiv:0705.4120v1 [gr-qc].
  2. ^ Dadhich, Naresh (August 2005). "Amal Kumar Raychaudhuri (1923–2005)" (PDF). Current Science. 89: 569–570.
  3. ^ Stephen W. Hawking; G. F. R. Ellis (1973). The large scale structure of space-time. Cambridge University Press. p. 84. ISBN 0-521-09906-4.

References

  • Poisson, Eric (2004). A Relativist's Toolkit: The Mathematics of Black Hole Mechanics. Cambridge: Cambridge University Press. ISBN 0-521-83091-5. See chapter 2 for an excellent discussion of Raychaudhuri's equation for both timelike and null geodesics, as well as the focusing theorem.
  • Carroll, Sean M. (2004). Spacetime and Geometry: An Introduction to General Relativity. San Francisco: Addison-Wesley. ISBN 0-8053-8732-3. See appendix F.
  • Stephani, Hans; Kramer, Dietrich; MacCallum, Malcolm; Hoenselaers, Cornelius; Hertl, Eduard (2003). Exact Solutions to Einstein's Field Equations (2nd ed.). Cambridge: Cambridge University Press. ISBN 0-521-46136-7. See chapter 6 for a very detailed introduction to geodesic congruences, including the general form of Raychaudhuri's equation.
  • Hawking, Stephen & Ellis, G. F. R. (1973). The Large Scale Structure of Space-Time. Cambridge: Cambridge University Press. ISBN 0-521-09906-4. See section 4.1 for a discussion of the general form of Raychaudhuri's equation.
  • Raychaudhuri, A. K. (1955). "Relativistic cosmology I.". Phys. Rev. 98 (4): 1123–1126. Bibcode:1955PhRv...98.1123R. doi:10.1103/PhysRev.98.1123. hdl:10821/7599. Raychaudhuri's paper introducing his equation.
  • Dasgupta, Anirvan; Nandan, Hemwati & Kar, Sayan (2009). "Kinematics of geodesic flows in stringy black hole backgrounds". Phys. Rev. D. 79 (12): 124004. arXiv:0809.3074. Bibcode:2009PhRvD..79l4004D. doi:10.1103/PhysRevD.79.124004. S2CID 118628925. See section IV for derivation of the general form of Raychaudhuri equations for three kinematical quantities (namely expansion scalar, shear and rotation).
  • Kar, Sayan & SenGupta, Soumitra (2007). "The Raychaudhuri equations: A Brief review". Pramana. 69 (1): 49–76. arXiv:gr-qc/0611123. Bibcode:2007Prama..69...49K. doi:10.1007/s12043-007-0110-9. S2CID 119438891. See for a review on Raychaudhuri equations.

Read other articles:

En 1977, Frederick Sanger desarrolló el método de secuenciación de ADN conocido como método de Sanger. Dos años más tarde empleó esta técnica para secuenciar el genoma del bacteriófago Phi-X174, el primer ácido nucleico secuenciado totalmente en la historia. este trabajo manualmente, sin ayuda de ningún automatismo. Este trabajo fue base fundamental para proyectos tan ambiciosos como el Proyecto Genoma Humano, y por él se le concedió su segundo Premio Nobel en 1980, que comparti...

 

Batu RusaDesaNegara IndonesiaProvinsiKepulauan Bangka BelitungKabupatenBangkaKecamatanMerawangKode pos33172Kode Kemendagri19.01.03.2001 Luas... km²Jumlah penduduk... jiwaKepadatan... jiwa/km² Kelenteng Kwanti di Batu Rusa. Untuk desa di Sumatera Selatan, lihat Batu Rusa, Pagar Gunung, Lahat. Batu Rusa adalah desa yang berada di kecamatan Merawang, Kabupaten Bangka, Kepulauan Bangka Belitung, Indonesia. lbsKecamatan Merawang, Kabupaten Bangka, Kepulauan Bangka BelitungDesa Air Anyir Bal...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (يوليو 2019) رون كاربنتر معلومات شخصية الميلاد 20 يناير 1970 (53 سنة)  سينسيناتي، أوهايو  مواطنة الولايات المتحدة  الطول 73 بوصة  الوزن 189 رطل  الحياة العملية المهن...

この記事には複数の問題があります。改善やノートページでの議論にご協力ください。 出典がまったく示されていないか不十分です。内容に関する文献や情報源が必要です。(2012年4月) 出典は脚注などを用いて記述と関連付けてください。(2012年4月) 独自研究が含まれているおそれがあります。(2012年4月)出典検索?: グレゴリウス4世 ローマ教皇 – 

 

← 2018 •  • 2026 → Elección para gobernador de Colorado 2022 Fecha 8 de noviembre de 2022 Demografía electoral Hab. registrados 3 833 468 Votantes 2 540 666 Participación    66.28 % Votos válidos 2 508 770 Resultados Jared Polis – Partido Demócrata Votos 1 468 481  8.9 %    58.53 % Heidi Ganahl – Partido Republicano Votos 983 040  9...

 

МорозівщинаКраїна  УкраїнаРозташування Україна,Черкаська область, Черкаський районПлоща 0,1Засновано 2007Оператор Бобрицька сільська громадаПосилання  Морозівщина у Вікісховищі Морозівщина — гідрологічна пам'ятка природи місцевого значення. Об'єкт розташован...

لوري كننغهام   معلومات شخصية الميلاد 8 مارس 1956(1956-03-08)لندن الوفاة 15 يوليو 1989 (عن عمر ناهز 33 عاماً)مدريد سبب الوفاة حادث مرور  الطول 1.80 م (5 قدم 11 بوصة) مركز اللعب لاعب وسط الجنسية إنجلترا المسيرة الاحترافية1 سنوات فريق مشاركات (أهداف) 1974–1977 ليتون أورينت 75 (15) 1977–19...

 

This article is about the Ukrainian town Skala-Podilska, also known as Skala on the River Zbrucz. The town is also known as Skała Podolska and Skala Podolskaya. For other uses of the word Skala, see Skala. Urban locality in Ternopil Oblast, Ukraine Place in Ternopil Oblast, UkraineSkala-Podilska Skala SealSkala-PodilskaLocation in UkraineShow map of Ternopil OblastSkala-PodilskaSkala-Podilska (Ukraine)Show map of UkraineCoordinates: 48°51′9″N 26°11′40″E / 48.85250°...

 

Indian politician In this Indian name, the name Vasanth is a patronymic, and the person should be referred to by the given name, Vijay. Vijay VasanthVijay in December 2017Member of Parliament, Lok SabhaIncumbentAssumed office 19 July 2021Preceded byH. VasanthakumarConstituencyKanniyakumariGeneral Secretary of the Tamil Nadu Congress CommitteeIncumbentAssumed office 2 January 2021 Personal detailsBorn (1983-05-20) 20 May 1983 (age 40)Nagercoil, Tamil Nadu, IndiaPolitical partyIndi...

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada November 2022. Artikel ini bukan mengenai Christina Aguilera. Christina Aguilarคริสติน่า อากีล่าร์Lahir31 Oktober 1966 (umur 57)Bangkok, ThailandGenrePopdanceEDMPekerjaanPenyanyiTahun aktif1989–sekarangLabelGMM GrammySitus ...

 

Monthly peer-reviewed journal on food science Academic journalTrends in Food Science and TechnologyDisciplineFood scienceLanguageEnglishEdited byPaul FinglasPublication detailsHistory1990–presentPublisherElsevierFrequencyMonthlyOpen accessHybridImpact factor12.563 (2021)Standard abbreviationsISO 4 (alt) · Bluebook (alt1 · alt2)NLM (alt) · MathSciNet (alt )ISO 4Trends Food Sci. Technol.IndexingCODEN (alt · alt2) · JST...

 

Bài viết này cần thêm liên kết tới các bài bách khoa khác để trở thành một phần của bách khoa toàn thư trực tuyến Wikipedia. Xin hãy giúp cải thiện bài viết này bằng cách thêm các liên kết có liên quan đến ngữ cảnh trong văn bản hiện tại. (tháng 7 năm 2018) Bài viết này là một bài mồ côi vì không có bài viết khác liên kết đến nó. Vui lòng tạo liên kết đến bài này từ các bài viết li...

У Вікіпедії є статті про інших людей із прізвищем Алтухов. Павло Сергійович Алтухов Павло Алтухов (попереду) та Дмитро Янчук (позаду) на Олімпійських іграх 2020Павло Алтухов (попереду) та Дмитро Янчук (позаду) на Олімпійських іграх 2020Загальна інформаціяНаціональність укра...

 

2012 film SouthwestFilm posterDirected byEduardo NunesProduced byHelder DacostaStarringSimone SpoladoreCinematographyMauro Pinheiro Jr.Release date 29 January 2012 (2012-01-29) (Rotterdam) Running time128 minutesCountryBrazilLanguagePortuguese Southwest (Portuguese: Sudoeste) is a 2012 Brazilian drama film directed by Eduardo Nunes.[1][2][3] Cast Simone Spoladore as Clarisse Dira Paes References ^ Smith, Ian Hayden (2012). International Film Guide 20...

 

Football match2012 Scottish Cup FinalThe cover of the match programme, which commemorated the fact the match was the first Edinburgh derby in a Scottish Cup Final since 1896.Event2011–12 Scottish Cup Hibernian Heart of Midlothian 1 5 Date19 May 2012VenueHampden Park, GlasgowMan of the MatchRudi Skácel (Hearts)[1]RefereeCraig ThomsonAttendance51,041← 2011 2013 → The 2012 Scottish Cup Final was the 127th final of the Scottish Cup. The match took place at Hampden Park on 1...

Embryonic inner cell mass tissue that forms the embryo itself, through the three germ layers EpiblastHuman embryo at day 9. Epiblast (pink) is on top of the hypoblast (brown)DetailsCarnegie stage3Days8Precursorinner cell massGives rise toectoderm, mesoderm, endodermIdentifiersLatinepiblastusTEE5.0.2.2.1.0.1 Anatomical terminology[edit on Wikidata] In amniote embryonic development, the epiblast (also known as the primitive ectoderm) is one of two distinct cell layers arising from the inner...

 

Test used to diagnose de Quervain's tenosynovitis The classic Finkelstein's test An example of a modified Eichhoff's test. Arrow marks where the pain is worsened. Eichhoff's test for De Quervain's tenosynovitis Finkelstein's test is a test used to diagnose de Quervain's tenosynovitis in people who have wrist pain.[1] Classical descriptions of the Finkelstein's test are when the examiner grasps the thumb and ulnar deviates the hand sharply.[1] If sharp pain occurs alo...

 

FuryCover art by Bill SienkiewiczPublication informationPublisherMarvel ComicsScheduleMonthlyFormatLimited seriesGenre Spy, war Publication date2001No. of issues6Main character(s)Nick FuryCreative teamCreated byGarth EnnisWritten byGarth EnnisArtist(s)Darick RobertsonJimmy PalmiottiPenciller(s)Darick RobertsonInker(s)Jimmy PalmiottiColorist(s)Avalon StudiosEditor(s)Axel Alonso Fury is a 2001 six issue miniseries about Nick Fury written by Garth Ennis. The series was published under Marvels MA...

Japanese professional wrestler (1965–2005) Shinya HashimotoHashimoto in January 2004Born(1965-07-03)July 3, 1965Toki City, Gifu, JapanDiedJuly 11, 2005(2005-07-11) (aged 40)[1]Yokohama, Japan[1]Cause of deathBrain hemorrhageProfessional wrestling careerRing name(s)Hashif KhanShinya HashimotoShogunBilled height1.80 m (5 ft 11 in)[2]Billed weight130 kg (287 lb)[2]Trained byAntonio InokiStu HartTokyo Joe[3]DebutSeptember 1, ...

 

Firefox browser released in 2011 Mozilla Firefox 4Firefox 4.0 on Windows 7.Original author(s)Mozilla CorporationDeveloper(s)Mozilla CorporationMozilla FoundationInitial releaseMarch 22, 2011 (2011-03-22)[1]Final release4.0.1 / April 28, 2011; 12 years ago (2011-04-28) Repositoryhg.mozilla.org/mozilla-central/ Written inC++, JavaScript,[2] CSS,[3][4] XUL, XBLEngineGeckoOperating systemCross-platformSize11.9 MB – Windows 26...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!