Superluminous supernova

NASA artist's impression of the explosion of SN 2006gy, a superluminous supernova

A super-luminous supernova (SLSN, plural super luminous supernovae or SLSNe) is a type of stellar explosion with a luminosity 10 or more times higher than that of standard supernovae.[1] Like supernovae, SLSNe seem to be produced by several mechanisms, which is readily revealed by their light-curves and spectra. There are multiple models for what conditions may produce an SLSN, including core collapse in particularly massive stars, millisecond magnetars, interaction with circumstellar material (CSM model), or pair-instability supernovae.

The first confirmed superluminous supernova connected to a gamma ray burst was not found until 2003, when GRB 030329 illuminated the Leo constellation.[2] SN 2003dh represented the death of a star 25 times more massive than the Sun, with material being blasted out at over a tenth the speed of light.[3]

Stars with M ≥ 40 M are likely to produce superluminous supernovae.[4]

Classification

Discoveries of many SLSNe in the 21st century showed that not only were they more luminous by an order of magnitude than most supernovae, their remnants were also unlikely to be powered by the typical radioactive decay that is responsible for the observed energies of conventional supernovae.[verification needed]

SLSNe events use a separate classification scheme to distinguish them from the conventional type Ia, type Ib/Ic, and type II supernovae,[5] roughly distinguishing between the spectral signature of hydrogen-rich and hydrogen-poor events.[verification needed]

Hydrogen-rich SLSNe are classified as Type SLSN-II, with observed radiation passing through the changing opacity of a thick expanding hydrogen envelope. Most hydrogen-poor events are classified as Type SLSN-I, with its visible radiation produced from a large expanding envelope of material powered by an unknown mechanism. A third less common group of SLSNe is also hydrogen-poor and abnormally luminous, but clearly powered by radioactivity from 56Ni.[6][verification needed]

Increasing number of discoveries find that some SLSNe do not fit cleanly into these three classes, so further sub-classes or unique events have been described. Many or all SLSN-I show spectra without hydrogen or helium but have lightcurves comparable to conventional type Ic supernovae, and are now classed as SLSN-Ic.[7] PS1-10afx is an unusually red hydrogen-free SLSN with an extremely rapid rise to a near-record peak luminosity and an unusually rapid decline.[8] PS1-11ap is similar to a type Ic SLSN but has an unusually slow rise and decline.[7]

Astrophysical models

A wide variety of causes have been proposed to explain events that are an order of magnitude or more greater than standard supernovae. The collapsar and CSM (circumstellar material) models are generally accepted and a number of events are well-observed. Other models are still only tentatively accepted or remain entirely theoretical.

Collapsar model

Light curves compared to normal supernovae

The collapsar model is a type of superluminous supernova that produces a gravitationally collapsed object, or black hole. The word "collapsar", short for "collapsed star", was formerly used to refer to the end product of stellar gravitational collapse, a stellar-mass black hole. The word is now sometimes used to refer to a specific model for the collapse of a fast-rotating star. When core collapse occurs in a star with a core at least around fifteen times the Sun's mass (M)—though chemical composition and rotational rate are also significant—the explosion energy is insufficient to expel the outer layers of the star, and it will collapse into a black hole without producing a visible supernova outburst.

A star with a core mass slightly below this level—in the range of 5–15 M—will undergo a supernova explosion, but so much of the ejected mass falls back onto the core remnant that it still collapses into a black hole. If such a star is rotating slowly, then it will produce a faint supernova, but if the star is rotating quickly enough, then the fallback to the black hole will produce relativistic jets. The energy that these jets transfer into the ejected shell renders the visible outburst substantially more luminous than a standard supernova. The jets also beam high energy particles and gamma rays directly outward and thereby produce x-ray or gamma-ray bursts; the jets can last for several seconds or longer and correspond to long-duration gamma-ray bursts, but they do not appear to explain short-duration gamma-ray bursts.

Stars with 5–15 M cores have an approximate total mass of 25–90 M, assuming the star has not undergone significant mass loss. Such a star will still have a hydrogen envelope and will explode as a Type II supernova. Faint Type II supernovae have been observed, but no definite candidates for a Type II SLSN (except type IIn, which are not thought to be jet supernovae). Only the very lowest metallicity population III stars will reach this stage of their life with little mass loss. Other stars, including most of those visible to us, will have had most of their outer layers blown away by their high luminosity and become Wolf-Rayet stars. Some theories propose these will produce either Type Ib or Type Ic supernovae, but none of these events so far has been observed in nature. Many observed SLSNe are likely Type Ic. Those associated with gamma-ray bursts are almost always Type Ic, being very good candidates for having relativistic jets produced by fallback to a black hole. However, not all Type Ic SLSNe correspond to observed gamma-ray bursts but the events would only be visible if one of the jets were aimed towards us.

In recent years, much observational data on long-duration gamma-ray bursts have significantly increased our understanding of these events and made clear that the collapsar model produces explosions that differ only in detail from more or less ordinary supernovae and have energy ranges from approximately normal to around 100 times larger.

A good example of a collapsar SLSN is SN 1998bw,[9] which was associated with the gamma-ray burst GRB 980425. It is classified as a type Ic supernova due to its distinctive spectral properties in the radio spectrum, indicating the presence of relativistic matter.

Circumstellar material model

Almost all observed SLSNe have had spectra similar to either a type Ic or type IIn supernova. The type Ic SLSNe are thought to be produced by jets from fallback to a black hole, but type IIn SLSNe have significantly different light curves and are not associated with gamma-ray bursts. Type IIn supernovae are all embedded in a dense nebula probably expelled from the progenitor star itself, and this circumstellar material (CSM) is thought to be the cause of the extra luminosity.[10] When material expelled in an initial normal supernova explosion meets dense nebular material or dust close to the star, the shockwave converts kinetic energy efficiently into visible radiation. This effect greatly enhances these extended duration and extremely luminous supernovae, even though the initial explosive energy was the same as that of normal supernovae.

Although any supernova type could potentially produce Type IIn SLSNe, theoretical constraints on the surrounding CSM sizes and densities do suggest that it will almost always be produced from the central progenitor star itself immediately prior to the observed supernova event. Such stars are likely candidates of hypergiants or LBVs that appear to be undergoing substantial mass loss, due to Eddington instability, for example, SN2005gl.[11]

Pair-instability supernova

Another type of suspected SLSN is a pair-instability supernova, of which SN 2006gy[12] may possibly be the first observed example. This supernova event was observed in a galaxy about 238 million light years (73 megaparsecs) from Earth.

The theoretical basis for pair-instability collapse has been known for many decades[13] and was suggested as a dominant source of higher mass elements in the early universe as super-massive population III stars exploded. In a pair-instability supernova, the pair production effect causes a sudden pressure drop in the star's core, leading to a rapid partial collapse. Gravitational potential energy from the collapse causes runaway fusion of the core which entirely disrupts the star, leaving no remnant.

Models show that this phenomenon only happens in stars with extremely low metallicity and masses between about 130 and 260 times the Sun, making them extremely unlikely in the local universe. Although originally expected to produce SLSN explosions hundreds of times greater than a normal supernova, current models predict that they actually produce luminosities ranging from about the same as a normal core collapse supernova to perhaps 50 times brighter, although remaining bright for much longer.[14]

Magnetar energy release

Models of the creation and subsequent spin-down of a magnetar yield much higher luminosities than regular supernova[15][16] events and match the observed properties[17][18] of at least some SLSNe. In cases where pair-instability supernova may not be a good fit for explaining a SLSN,[19] a magnetar explanation is more plausible.

Other models

There are still models for SLSN explosions produced from binary systems, white dwarf or neutron stars in unusual arrangements or undergoing mergers, and some of these are proposed to account for some observed gamma-ray bursts.

See also

  • SN 2018cow
  • Gamma-ray burst progenitors – Types of celestial objects that can emit gamma-ray bursts
  • Hypernova – Supernova that ejects a large mass at unusually high velocity
  • Quark star – Compact exotic star which forms matter consisting mostly of quarks
  • Quark-nova – Hypothetical violent explosion resulting from conversion of a neutron star to a quark star

References

  1. ^ MacFadyen, A. I.; Woosley, S. E.; Heger, A. (2001). "Supernovae, Jets, and Collapsars". The Astrophysical Journal. 550 (1): 410–425. arXiv:astro-ph/9910034. Bibcode:2001ApJ...550..410M. doi:10.1086/319698. ISSN 0004-637X. S2CID 1673646.
  2. ^ Dado, Shlomo; Dar, Arnon; De Rjula, A. (2003). "The Supernova Associated with GRB 030329". The Astrophysical Journal. 594 (2): L89 – L92. arXiv:astro-ph/0304106. Bibcode:2003ApJ...594L..89D. doi:10.1086/378624. ISSN 0004-637X. S2CID 10668797.
  3. ^ Krehl, Peter O. K. (2009). History of shock waves, explosions and impact: a chronological and biographical reference. Berlin: Springer. Bibcode:2009hswe.book.....K. ISBN 978-3-540-30421-0.
  4. ^ Heger, A.; Fryer, C. L.; Woosley, S. E.; Langer, N.; Hartmann, D. H. (2003). "How Massive Single Stars End Their Life". The Astrophysical Journal. 591 (1): 288–300. arXiv:astro-ph/0212469. Bibcode:2003ApJ...591..288H. doi:10.1086/375341. ISSN 0004-637X. S2CID 59065632.
  5. ^ Quimby, R. M.; Kulkarni, S. R.; Kasliwal, M. M.; Gal-Yam, A.; Arcavi, I.; Sullivan, M.; Nugent, P.; Thomas, R.; Howell, D. A.; et al. (2011). "Hydrogen-poor superluminous stellar explosions". Nature. 474 (7352): 487–9. arXiv:0910.0059. Bibcode:2011Natur.474..487Q. doi:10.1038/nature10095. PMID 21654747. S2CID 4333823.
  6. ^ Gal-Yam, Avishay (2012). "Luminous Supernovae". Science. 337 (6097): 927–32. arXiv:1208.3217. Bibcode:2012Sci...337..927G. doi:10.1126/science.1203601. PMID 22923572. S2CID 206533034.
  7. ^ a b McCrum, M.; Smartt, S. J.; Kotak, R.; Rest, A.; Jerkstrand, A.; Inserra, C.; Rodney, S. A.; Chen, T.- W.; Howell, D. A.; et al. (2013). "The superluminous supernova PS1-11ap: Bridging the gap between low and high redshift". Monthly Notices of the Royal Astronomical Society. 437 (1): 656–674. arXiv:1310.4417. Bibcode:2014MNRAS.437..656M. doi:10.1093/mnras/stt1923. S2CID 119224139.
  8. ^ Chornock, R.; Berger, E.; Rest, A.; Milisavljevic, D.; Lunnan, R.; Foley, R. J.; Soderberg, A. M.; Smartt, S. J.; Burgasser, Adam J.; et al. (2013). "PS1-10afx at z = 1.388: Pan-STARRS1 Discovery of a New Type of Superluminous Supernova". The Astrophysical Journal. 767 (2): 162. arXiv:1302.0009. Bibcode:2013ApJ...767..162C. doi:10.1088/0004-637X/767/2/162. S2CID 35006667.
  9. ^ Fujimoto, S. I.; Nishimura, N.; Hashimoto, M. A. (2008). "Nucleosynthesis in Magnetically Driven Jets from Collapsars". The Astrophysical Journal. 680 (2): 1350–1358. arXiv:0804.0969. Bibcode:2008ApJ...680.1350F. doi:10.1086/529416. S2CID 118559576.
  10. ^ Smith, N.; Chornock, R.; Li, W.; Ganeshalingam, M.; Silverman, J. M.; Foley, R. J.; Filippenko, A. V.; Barth, A. J. (2008). "SN 2006tf: Precursor Eruptions and the Optically Thick Regime of Extremely Luminous Type IIn Supernovae". The Astrophysical Journal. 686 (1): 467–484. arXiv:0804.0042. Bibcode:2008ApJ...686..467S. doi:10.1086/591021. S2CID 16857223.
  11. ^ Gal-Yam, A.; Leonard, D. C. (2009). "A Massive Hypergiant Star as the Progenitor of the Supernova SN 2005gl". Nature. 458 (7240): 865–867. Bibcode:2009Natur.458..865G. doi:10.1038/nature07934. PMID 19305392. S2CID 4392537.
  12. ^ Smith, N.; Chornock, R.; Silverman, J. M.; Filippenko, A. V.; Foley, R. J. (2010). "Spectral Evolution of the Extraordinary Type IIn Supernova 2006gy". The Astrophysical Journal. 709 (2): 856–883. arXiv:0906.2200. Bibcode:2010ApJ...709..856S. doi:10.1088/0004-637X/709/2/856. S2CID 16959330.
  13. ^ Fraley, G. S. (1968). "Supernovae Explosions Induced by Pair-Production Instability" (PDF). Astrophysics and Space Science. 2 (1): 96–114. Bibcode:1968Ap&SS...2...96F. doi:10.1007/BF00651498. S2CID 122104256.
  14. ^ Kasen, D.; Woosley, S. E.; Heger, A. (2011). "Pair Instability Supernovae: Light Curves, Spectra, and Shock Breakout". The Astrophysical Journal. 734 (2): 102. arXiv:1101.3336. Bibcode:2011ApJ...734..102K. doi:10.1088/0004-637X/734/2/102. S2CID 118508934.
  15. ^ Woosley, S.E. (August 2010). "Bright Supernovae From Magnetar Birth". Astrophysical Journal Letters. 719 (2): L204 – L207. arXiv:0911.0698. Bibcode:2010ApJ...719L.204W. doi:10.1088/2041-8205/719/2/L204. S2CID 118564100.
  16. ^ Kasen, Daniel; Bildsten, Lars (2010). "Supernova Light Curves Powered by Young Magnetars". Astrophysical Journal. 717 (1): 245–249. arXiv:0911.0680. Bibcode:2010ApJ...717..245K. doi:10.1088/0004-637X/717/1/245. S2CID 118630165.
  17. ^ Inserra, C.; Smartt, S. J.; Jerkstrand, A.; Valenti, S.; Fraser, M.; Wright, D.; Smith, K.; Chen, T.-W.; Kotak, R.; et al. (June 2013). "Super Luminous Ic Supernovae: catching a magnetar by the tail". The Astrophysical Journal. 770 (2): 128. arXiv:1304.3320. Bibcode:2013ApJ...770..128I. doi:10.1088/0004-637X/770/2/128. S2CID 13122542.
  18. ^ Howell, D. A.; Kasen, D.; Lidman, C.; Sullivan, M.; Conley, A.; Astier, P.; Balland, C.; Carlberg, R. G.; Fouchez, D.; et al. (October 2013). "Two superluminous supernovae from the early universe discovered by the Supernova Legacy Survey". Astrophysical Journal. 779 (2): 98. arXiv:1310.0470. Bibcode:2013ApJ...779...98H. doi:10.1088/0004-637X/779/2/98. S2CID 119119147.
  19. ^ Nicholl, M.; Smartt, S. J.; Jerkstrand, A.; Inserra, C.; McCrum, M.; Kotak, R.; Fraser, M.; Wright, D.; Chen, T.-W.; et al. (October 2013). "Slowly fading super-luminous supernovae that are not pair-instability explosions". Nature. 502 (7471): 346–9. arXiv:1310.4446. Bibcode:2013Natur.502..346N. doi:10.1038/nature12569. PMID 24132291. S2CID 4472977.

Further reading

Read other articles:

Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Cet article ne cite pas suffisamment ses sources (avril 2013). Si vous disposez d'ouvrages ou d'articles de référence ou si vous connaissez des sites web de qualité traitant du thème abordé ici, merci de compléter l'article en donnant les références utiles à sa vérifiabilité et en les liant à la section « Notes et références » En pratique : Quelles sources sont attendues ? Comm...

 

Hungarian ice hockey player Ice hockey player János Vas Born (1984-01-29) 29 January 1984 (age 39)Dunaújváros, HungaryHeight 6 ft 1 in (185 cm)Weight 203 lb (92 kg; 14 st 7 lb)Position Left wingShoots LeftErste Liga teamFormer teams DVTK JegesmedvékMalmö RedhawksIowa StarsBrynäs IFFehérvár AV19Ducs de DijonDragons de RouenHC Slavia PrahaHC 21 PrešovNational team  HungaryNHL Draft 32nd overall, 2002Dallas StarsPlaying career 2002–pres...

 

Ildehausen Stadt Seesen Wappen von Ildehausen Koordinaten: 51° 51′ N, 10° 8′ O51.851894510.1318781190Koordinaten: 51° 51′ 7″ N, 10° 7′ 55″ O Höhe: 190 m Fläche: 7,56 km² Einwohner: 710 (30. Jun. 2018)[1] Bevölkerungsdichte: 94 Einwohner/km² Eingemeindung: 1. Juli 1972 Postleitzahl: 38723 Ildehausen (Niedersachsen) Lage von Ildehausen in Niedersachsen Ildehausen auf einer MeriankarteIldehaus...

يسرائير إيرباص إيه 320 تابعة للشركة في مطار كورفو الدولي إياتا6H إيكاوISR رمز النداءISRAIR تاريخ الإنشاء 1996 الجنسية إسرائيل  المطارات الرئيسية مطار بن غوريون الدولي المطارات الثانوية مطار رامونمطار حيفا الشعار למה לשלם יותר? لماذا تدفع أكثر؟ المقرات الرئيسية تل أبيب موقع ويب...

 

Spanish footballer Not to be confused with Coke (footballer); Koke (footballer, born 1983); or Keko (footballer, born 1991). In this Spanish name, the first or paternal surname is Resurrección and the second or maternal family name is Merodio. Koke Koke with Atlético Madrid in 2019Personal informationFull name Jorge Resurrección Merodio[1]Date of birth (1992-01-08) 8 January 1992 (age 31)[2]Place of birth Madrid, SpainHeight 1.76 m (5 ft 9 in) ...

 

Las reducciones fundadas por la Compañía de Jesús entre los guaycurúes, guaraníes y pueblos afines en las regiones del Guayrá, Itatín, Tapé (las tres en el actual Brasil), Uruguay (Brasil, Argentina y Uruguay actuales), Paraná (Argentina, Paraguay y Brasil actuales) y las áreas guaycurúes en el gran Chaco (Argentina y Paraguay actuales), fueron establecidas en el siglo XVII dentro de territorios pertenecientes al Imperio español en la gobernación del Río de la Plata y del P...

  لمعانٍ أخرى، طالع توماس جونز (توضيح). توماس جونز معلومات شخصية الميلاد 27 سبتمبر 1870  الوفاة 15 أكتوبر 1955 (85 سنة)   لندن  مواطنة المملكة المتحدة ويلز المملكة المتحدة لبريطانيا العظمى وأيرلندا (–12 أبريل 1927)  الحياة العملية المدرسة الأم مدرسة لويس في بنجام  [...

 

Pakistani Qawwal (born 1960) Abdullah Manzoor Niazi QawwalBackground informationBorn1960KarachiOriginPakistanGenresQawwalInstrument(s)HarmoniumWebsiteAbdullah Niazi Waqas Niazi Qawwal & BrothersMusical artist Abdullah Niazi Qawwal (born 1960) (Urdu: عبداللہ نیازی قوال) is a Pakistani Qawwal.[1] He belongs to the Qawwal Bachchon Ka Gharana of Delhi. He is the eldest son of Manzoor Niazi Qawwal[1] (no relation to the Pashtun Niazi tribe). Abdullah Niazi was o...

 

Miss Americana Miss Americana adalah film dokumenter Amerika tahun 2020 karya sutradara Lana Wilson, yang mengikuti perjalanan penyanyi dan penulis lagu Amerika Taylor Swift selama beberapa tahun kariernya. Film ini dirilis di Netflix dan di beberapa bioskop terpilih pada tanggal 31 Januari 2020.[1] Dalam film dokumenter ini, Taylor Swift menceritakan banyak hal yang luput dari perhatian media.[1] Film yang tayang perdana di Festival Film Sundance 2020 ini menyoroti masa kecil...

Ancient Egyptian deityShedAmulet depicting Shed subduing dangerous animals.[1]Part of a series onAncient Egyptian religion Beliefs Afterlife Cosmology Duat Ma'at Mythology Numerology Philosophy Soul Practices Funerals Offerings: Offering formula Temples Priestess of Hathor Pyramids Deities (list)Ogdoad Amun Amunet Hauhet Heh Kauket Kek Naunet Nu Ennead Atum Geb Isis Nephthys Nut Osiris Set Shu Tefnut A Aati Aker Akhty Amenhotep, son of Hapu Amesemi Ammit Am-heh Amu-Aa Anat Andjety Anh...

 

Sociological correlation Spanish Dictator Francisco Franco with Catholic Church dignitaries in 1946[1] Most measures of religiosity, such as church attendance and affiliation, are positively correlated with the authoritarian personality cluster, which includes submission to authority, conventionality, and intolerance of out-groups.[2][3][4] The correlation is especially strong between religious fundamentalism (defined as belief in an inerrant set of religious t...

 

Sri Lankan politician Hon.S. SivamohanMP MPCசி. சிவமோகன்Member of Parliamentfor Vanni DistrictIncumbentAssumed office 2015Member of the Northern Provincial Council for Mullaitivu DistrictIn office2013–2015Succeeded byVallipuram Kamaleswaran Personal detailsPolitical partyEelam People's Revolutionary Liberation FrontOther politicalaffiliationsTamil National AllianceProfessionPhysician Sivapragasam Sivamohan (Tamil: சிவப்பிரகாசம் சிவம...

2017 film Yeva ԵվաFilm posterDirected byAnahit AbadWritten byAnahit AbadProduced byTaghi AligholizadehStarringNarine GrigoryanRelease date 24 September 2017 (2017-09-24) CountryArmeniaLanguageArmenian Yeva (in Armenian Եվա, in Persian یه‌وا) is a 2017 Armenian drama film directed by Armenian-Iranian filmmaker Anahit Abad.[1] The joint Iranian and Armenian produced film financed by the National Cinema Center of Armenia and Iran's Farabi Cinema Foundation is A...

 

This article is about the brewery. For the St. Louis-based company, see Anheuser-Busch. For its parent company, see Anheuser–Busch InBev. United States historic placeAnheuser-Busch BreweryU.S. National Register of Historic PlacesU.S. National Historic Landmark DistrictSt. Louis Landmark The packaging plant in St. Louis, Missouri Anheuser-Busch BreweryShow map of St. LouisShow map of MissouriShow map of the United StatesLocation721 PestalozziSt. Louis, MissouriCoordinates38°35′51″N 90°...

 

Bridge in ShrewsburyKingsland BridgeKingsland BridgeCoordinates52°42′16″N 2°45′32″W / 52.7044°N 2.7589°W / 52.7044; -2.7589OS grid referenceSJ488121CrossesRiver SevernLocaleShrewsburyHeritage statusGrade IIPreceded byPorthill BridgeFollowed byGreyfriars BridgeCharacteristicsDesignarchLongest span212 ft (65 m)HistoryDesignerJohn William GroverConstructed byCleveland Bridge & Engineering CompanyConstruction start1883Construction end1883Statistic...

العلاقات الباكستانية البوتانية باكستان بوتان   باكستان   بوتان تعديل مصدري - تعديل   العلاقات الباكستانية البوتانية هي العلاقات الثنائية التي تجمع بين باكستان وبوتان.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه المق...

 

Xu / HsuPronunciationXǔ (Mandarin)Khó (Hokkien)Heoi2 (Cantonese)Kóu (Teochew)Hứa (Vietnamese)Language(s)ChineseOriginLanguage(s)ChineseMeaningto allowOther namesVariant form(s)Xu, Hsu (Mandarin)Hui, Hoi, Hua (Cantonese)Shue, Shea (Taiwanese)Kho, Khor, Khaw, Ko (Hokkien)Koh, Khoh, Kho (Teochew)Hii, Hee, Hoo (Fuzhou)Koo (Hakka)Hy (Vietnamese)Co, Ngo (Filipino)Derivative(s)Heo (Korean) XuTraditional Chinese許Simplified Chinese许TranscriptionsStandard MandarinHanyu PinyinXǔWade–Gil...

 

Representación del Mar de bronce en la Jewish Encyclopedia (Enciclopedia Judía) de 1906. Mar de bronce es el nombre con el que se conoció un gran recipiente circular, de diez codos (4,40 metros) de diámetro y cinco de profundidad (2,20 m)[1]​ con un palmo de grosor, que Salomón mandó fundir para el Templo de Jerusalén.[2]​[3]​ En el mismo cabían entre dos y tres mil “batos” de agua (cantidad que oscila, según el sistema usado, entre los 74.000 litros ya que un b...

Ethnic group in Europe Turkish workers' block of flats in Rotterdam, Netherlands, 1972. The Turks in Europe (sometimes called Euro-Turks; Turkish: Avrupa'daki Türkler or Avrupa'da yaşayan Türkler or Avrupa Türkleri) refers to ethnic Turks living in Europe. Generally, the Euro-Turks refers to the large Turkish diasporas living in Central and Western Europe as well as the historic Turkish minorities living in the Balkans since Ottoman rule, and the Turks living in Russia and other European ...

 

إبراهيما كوني   معلومات شخصية الميلاد 16 يونيو 1999 (24 سنة)  باماكو  الطول 1.90 م (6 قدم 3 بوصة) مركز اللعب مهاجم الجنسية مالي  معلومات النادي النادي الحالي لوريان الرقم 9 مسيرة الشباب سنوات فريق 0000–2018 CO Bamako [الإنجليزية]‏ المسيرة الاحترافية1 سنوات فريق م. (هـ.) ...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!