يسعى علماء الرياضيات إلى استخدام أنماط رياضية لصياغة فرضيات جديدة؛[13][14] من خلال استعمال إثباتات رياضية بهدف الوصول للحقيقة وذرء الفرضيات السابقة أو الخاطئة. فمن خلال استخدام التجريدوالمنطق، طُوِّرت الرياضيات من العدوالحسابوالقياس إلى الدراسة المنهجية للأشكال وحركات الأشياء المادية. لقد كانت الرياضيات العملية نشاطًا إنسانيًا يعود إلى تاريخ وجود السجلات المكتوبة. يمكن أن يستغرق البحث المطلوب لحل المسائل الرياضية سنوات أو حتى قرون من البحث المستمر.
ظهرت الحجج الصارمة أولًا في الرياضيات اليونانية، وعلى الأخص في أصولإقليدس. منذ العمل الرائد لجوزيبه بيانو (1858-1932)، وديفيد هيلبرت (1862-1943)، وغيرهم في النظم البديهية في أواخر القرن التاسع عشر، أصبح من المعتاد النظر إلى الأبحاث الرياضية كإثبات للحقيقة عن طريق الاستنتاج الدقيق للبديهيات والتعاريف المختارة بشكل مناسب. وتطورت الرياضيات بوتيرة بطيئة نسبيًا حتى عصر النهضة، عندما أدت الابتكارات الرياضية التي تتفاعل مع الاكتشافات العلمية الجديدة إلى زيادة سريعة في معدل الاكتشافات الرياضية التي استمرت حتى يومنا هذا.[15]
يمكن اعتبار تاريخ الرياضيات كسلسلة متزايدة من التجريدات. ربما كان التجريد الأول، الذي تشترك فيه العديد من الحيوانات،[26] هو الأعداد: إدراك أن مجموعة من تفاحتين ومجموعة من برتقالتين (على سبيل المثال) تشترك في شيء ما، ألا وهو كمية أعضائها.
لا تظهر أدلة الرياضيات المعقدة حتى حوالي عام 3000 قبل الميلاد، عندما بدأ البابليونوالمصريون في استخدام الحسابوالجبروالهندسة لفرض الضرائب والحسابات المالية الأخرى، للبناء والتشييد، وعلم الفلك.[28] أقدم النصوص الرياضية من بلاد ما بين النهرينومصر هي من 2000-1800 قبل الميلاد. تذكر العديد من النصوص المبكرة أن نظرية فيثاغورس هي التطور الرياضي الأقدم والأكثر انتشارًا بعد الحسابوالهندسة الأساسية. في الرياضيات البابلية يظهر الحساب الأولي (الجمعوالطرحوالضربوالقسمة) أولًا في السجل الأثري. يمتلك البابليون أيضًا نظامًا للقيمة الموضعية، واستخدموا نظامًا رقميًا خاصًا بالجنس، ولا يزالون يستخدمون اليوم لقياس الزواياوالوقت.[29]
ابتداءً من القرن السادس قبل الميلاد مع فيثاغورس، بدأ الإغريق القدماء دراسة منهجية للرياضيات كموضوع في حد ذاته مع الرياضيات اليونانية.[30] حوالي 300 قبل الميلاد، قدم إقليدس الطريقة البديهية التي لا تزال تستخدم في الرياضيات اليوم، والتي تتكون من التعريف، البديهية، النظرية، والإثبات. يعتبر كتابه الأصول الأكثر نجاحًا وتأثيرًا في كل العصور.[31] غالبًا ما يُعتبر عالم الرياضيات الأكبر في العصور القديمة أرخميدس (حوالي 287-212 قبل الميلاد).[32] قام بتطوير صيغ لحساب مساحة السطح وحجم المواد الصلبة واستخدم طريقة الاستنفاد لحساب المنطقة تحت قوس القطع المكافئ مع تجميع سلسلة لانهائية، بطريقة لا تختلف كثيرًا عن حساب التفاضل والتكامل الحديث.[33] الإنجازات البارزة الأخرى في الرياضيات اليونانية هي أقسام مخروطية (أبلونيوس البرغاوي، القرن الثالث قبل الميلاد)،[34]وعلم المثلثات (أبرخش، القرن الثاني قبل الميلاد)،[35] وبدايات الجبر (ديوفانتوس الإسكندري، القرن الثالث للميلاد).[36]
كان لعلماء المسلمين في عصر الحضارة الإسلامية فضل كبير في تقدم علم الرياضيات، فقد أثروه وابتكروا فيه وأضافوا إليه وطوّروه، استفاد العالم أجمع من الإرث الذي تركوه. في البداية، جمع العلماء المسلمون نتاج علماء الأمم السابقة في حقل الرياضيات، ثم ترجموه، ومنه انطلقوا في الاكتشاف والابتكار والإبداع، ويُعد المسلمون أول من اشتغل في علم الجبر وأول من كتب فيه الخوارزمي،[37] وهم الذين أطلقوا عليه اسم «الجبر»، ونتيجة الاهتمام الذي أولوه إليه، فقد كانوا أول من ألَّف فيه بطريقة علمية منظمة. كما توسعوا في حساب المثلثاتوبحوث النسبة التي قسموها إلى ثلاثة أقسام: عددية وهندسية وتأليفية، وحلّوا بعض المعادلات الخطية بطريقة حساب الخطأين، والمعادلات التربيعية، وأحلّوا الجيوب محل الأوتار، وجاءوا بنظريات أساسية جديدة لحل مثلثات الأضلاع، وربطوا علم الجبر بالأشكال الهندسية، وإليهم يرجع الفضل في وضع علم المثلثات بشكل علمي منظم مستقل عن علم الفلك، ما دفع الكثيرين إلى اعتباره علمًا عربيًّا خالصًا.[38] ومن الإنجازات البارزة الأخرى في الفترة الإسلامية هي التقدم في علم المثلثات الكروية وإضافة العلامة العشرية إلى نظام الأرقام العربية. كان العديد من علماء الرياضيات البارزين من هذه الفترة من بلاد فارس، مثل الخوارزميوعمر الخياموشرف الدين الطوسي.
حتى حوالي عام 1700 في أوروبا، كان مصطلح الرياضيات أكثر شيوعًا بمعنى «علم التنجيم» (أو في بعض الأحيان «علم الفلك») بدلًا من «الرياضيات»؛ لقد تغير المعنى تدريجيًّا إلى معناه الحالي من حوالي 1500 إلى 1800 للميلاد.[39]
منذ ذلك الحين امتدت الرياضيات إلى حد كبير، وكان هناك تفاعل مثمر بين الرياضيات والعلوم، لما فيه فائدة لكليهما. الاكتشافات الرياضية لا تزال تبذل اليوم. وفقا لميخائيل سيفريوك، في عدد يناير 2006 من نشرة الجمعية الرياضية الأمريكية، «عدد الأوراق والكتب المدرجة في قاعدة بيانات المراجعات الرياضية منذ عام 1940 (السنة الأولى من تشغيل ماثماتيكل ريفيوز) هو الآن أكثر من 1.9 مليون، وأكثر من 75 ألف عنصر إلى قاعدة البيانات كل عام. تحتوي الغالبية العظمى من الأعمال في هذا المحيط على نظريات رياضية جديدة وإثباتها».[40]
أصل الكلمة
كلمة الرياضيات تأتي من (باليونانية: máthēma)، وتعني «ما الذي تم تعلمه»،[41] «ما يمكن للمرء أن يعرف»، وبالتالي «الدراسة» و«العلم». أصبحت كلمة «الرياضيات» تحمل معنى «دراسة رياضية» أضيق وأكثر تقنية حتى في الأوقات الكلاسيكية.[42] صفتها هي (θημαθηματικός (mathēmatikós، بمعنى «ذات صلة بالتعلم» أو «مجتهد»، والتي أصبحت كذلك تعني «رياضية». على وجه الخصوص، (μαθηματικὴ τέχνη (mathēmatikḗ tékhnē، (باللاتينية: ars mathematica)، وتعني «الفن الرياضي».
وبالمثل، كانت إحدى مدرستي الفكر الرئيسيتين في فيثاغوريات تُعرف باسم mathēmatikoi) μαθηματικοί) والتي كانت في ذلك الوقت تعني «المعلمين» بدلًا من «علماء الرياضيات» بالمعنى الحديث.
في اللغة اللاتينية، وفي اللغة الإنجليزية حتى حوالي عام 1700، كان مصطلح الرياضيات أكثر شيوعًا ب«علم التنجيم» (أو في بعض الأحيان «علم الفلك») بدلًا من «الرياضيات»؛ لقد تغير المعنى تدريجيًّا إلى معناه الحالي من حوالي 1500 إلى 1800. وقد أدى ذلك إلى العديد من الترجمات الخاطئة. على سبيل المثال، تحذير القديس أوغسطينوس بأنه يجب على المسيحيين أن يحذروا من الرياضيات، أي المنجمين، يتم تفسيره أحيانًا باعتباره إدانة لعلماء الرياضيات.[39]
يعود شكل الجمع الواضح باللغة الإنجليزية، مثل صيغة الجمع الفرنسية للرياضيات (والمشتق المفرد الأقل استخدامًا للرياضيات)، إلى الرياضيات التعددية اللغوية اللاتينية، بناءً على الجمع اليوناني (θημαθηματικά (ta mathēmatiká، استخدمه أرسطو (384–322 قبل الميلاد)، ويعني «كل الأشياء الرياضية»؛ على الرغم من أنه من المعقول أن تقترض اللغة الإنجليزية فقط ((mathematic(al) وشكلت الرياضيات الاسم من جديد، بعد نمط الفيزياءوالميتافيزيقيا، التي ورثت من اليونانية.[43] في اللغة الإنجليزية، تأخذ كلمة (mathematics) الاسمية صيغة مفردة. غالبًا ما يتم اختصارها إلى (maths) أو (math) في أمريكا الشمالية.[44]
أصل الكلمة في اللغة العربية
يأتي مصطلح الرياضيات من الجذر اللغوي رَوْض.[45] يذكر قاموس مجمع اللغة العربية في القاهرة بأن كلمة رياضة تشير إلى علم الرياضيات وأيضًا استخدمت صفة «رياضيّ/رياضيّة» بديل مصطلح عالم رياضيات أو رياضياتي.[46] كان مصطلح الرياضيات يتم استبداله بمصطلح «علم الحساب» وأيضًا قام الخوارزمي بإضافة مصطلح «الجبر» وهنالك مصطلح إضافي هو علم المثلثات، كانت هذه المصطلحات تقوم مقام مصطلح الرياضيات في الكتابات العربية القديمة.
تعريف ومفهوم الرياضيات
ليس للرياضيات تعريف مُتفق عليه عمومًا.[11][12] عرّف أرسطو الرياضيات بأنها «علم الكمية»، وساد هذا التعريف حتى القرن الثامن عشر.[47] قال غاليليو غاليلي (1564–1642): «لا يمكن قراءة الكون حتى نتعلم اللغة ونتعرف على الحروف التي كتبت بها. إنه مكتوب بلغة رياضية، والحروف مثلثاتودوائر وغيرها من الأشكال الهندسية. حروف، بدونها تعني أنه من المستحيل إنسانيًا فهم كلمة واحدة، وبدون ذلك، يتجول الشخص في متاهة مظلمة».[48] أشار كارل فريدريش غاوس (1777-1855) إلى الرياضيات باسم «ملكة العلوم».[49] صرح ألبرت أينشتاين (1879-1955) بأنه «بقدر ما تشير قوانين الرياضيات إلى الواقع، فهي غير مؤكدة، وبقدر ما تكون مؤكدة، فإنها لا تشير إلى الواقع».(4)
ابتداءً من القرن التاسع عشر، عندما ازدادت دراسة الرياضيات بصرامة وبدأت في معالجة الموضوعات المجردة مثل نظرية المجموعاتوالهندسة الإسقاطية، التي لا علاقة واضحة لها بالكميةوالقياس، بدأ علماء الرياضياتوالفلاسفة في اقتراح مجموعة متنوعة من التعريفات.[50] تؤكد بعض هذه التعريفات على الطابع الاستنتاجي للكثير من الرياضيات، وبعضها يركز على تجريده، بينما يركز البعض على مواضيع معينة داخل الرياضيات. اليوم، لا يوجد توافق في الآراء حول تعريف الرياضيات، حتى بين المهنيين.[11] لا يوجد إجماع حول ما إذا كانت الرياضيات فن أم علم.(5) الكثير من علماء الرياضيات المحترفين لا يهتمون بتعريف الرياضيات، أو يعتبرونه غير قابل للتعريف.[11] يقول البعض فقط «الرياضيات هي ما يفعله علماء الرياضيات».[11]
وتسمى ثلاثة أنواع رائدة من تعريف الرياضيات المنطق، الحدس، والشكلية، كل منها يعكس مدرسة فلسفية مختلفة.[51] جميعهم يعانون من مشاكل حادة، لا يوجد قبول واسع النطاق، ولا يبدو أن الاتفاق ممكن.[51]
كان التعريف المبكر للرياضيات من حيث المنطق لبنيامين بيرس والذي قال «العلم الذي يستخلص النتائج الضرورية» (1870).[52] في مبادئ الرياضيات، قدم برتراند راسلوألفريد نورث وايتهيد البرنامج الفلسفي المعروف بالمنطقية، وحاولا إثبات أنه يمكن تعريف جميع المفاهيم والبيانات والمبادئ الرياضية وإثباتها بالكامل من حيث المنطق الرمزي.[53]
تعرف التعريفات البديهية، التي نشأت من فلسفة عالم الرياضيات لويتزن براور، على الرياضيات مع بعض الظواهر العقلية. مثال على تعريف الحدس هو «الرياضيات هي النشاط العقلي الذي يتكون في تنفيذ بنيات واحدة تلو الأخرى».[51] وخصوصية الحدس هو أنه يرفض بعض الأفكار الرياضية التي تعتبر صالحة وفقا لتعاريف أخرى. على وجه الخصوص، في حين أن فلسفات الرياضيات الأخرى تسمح بوجود أشياء يمكن إثبات وجودها على الرغم من عدم إمكانية بنائها، فإن الحدس يسمح فقط بالأشياء الرياضية التي يمكن للمرء أن يصنعها بالفعل.
تعرّف التعاريف الشكلية الرياضيات برموزها وقواعد العمل عليها. عرف هاسكل كاري الرياضيات ببساطة بأنها «علم النظم الرسمية».[54] النظام الرسمي هو مجموعة من الرموز أو الرموز المميزة وبعض القواعد التي توضح كيفية دمج الرموز في صيغ. في النظم الرسمية، فإن كلمة البديهية لها معنى خاص، تختلف عن المعنى العادي «لحقيقة بديهية». في الأنظمة الرسمية، البديهية هي مزيج من الرموز التي يتم تضمينها في نظام رسمي معين دون الحاجة إلى اشتقاقها باستخدام قواعد النظام.
ثلاثة تعريفات رائدة
ثلاثة تعريفات رائدة من تعريفات الرياضيات اليوم تسمى المنطقانية، والحدسية، والشكلية، كل منها يعكس مدرسة فلسفية مختلفة.[55] جميعها بها عيوب خطيرة، ولا يوجد قبول واسع لأي منها، ولا يبدو أن الاتفاق ممكن.[55]
كان التعريف المبكر للرياضيات من حيث المنطقانية هو تعريف بنجامين بيرس (1870): «العلم الذي يستخلص الاستنتاجات الضرورية».[56] في مبادئ الرياضيات، طور برتراند راسلوألفريد نورث وايتهيد البرنامج الفلسفي المعروف بالمنطقانية، وحاول إثبات أن جميع المفاهيم والبيانات والمبادئ الرياضية يمكن تعريفها وإثباتها بالكامل من حيث المنطق الرمزي. المنطقانية في تعريف الرياضيات بواسطة راسل (1903) «كل الرياضيات هي منطق رمزي.»[57]
التعريفات الحدسية، التي نشأت من فلسفة عالم الرياضيات لويتزن براور، تحدد الرياضيات بظواهر عقلية معينة. مثال على التعريف الحدسي هو «الرياضيات هي النشاط العقلي الذي يتكون من تنفيذ البنى واحدة تلو الأخرى.»[55] من خصوصية الحدسية أنه ترفض بعض الأفكار الرياضية التي تعتبر صالحة وفقًا لتعريفات أخرى. على وجه الخصوص، في حين أن فلسفات الرياضيات الأخرى تسمح بالأشياء التي يمكن إثبات وجودها على الرغم من عدم إمكانية بنائها، فإن الحدسية تسمح فقط بالكائنات الرياضية التي يمكن للمرء أن يبنيها بالفعل. ترفض الحدسية أيضًا قانون الوسط المستبعد (أي، ). في حين أن هذا الموقف يجبرهم على رفض نسخة شائعة واحدة من الإثبات عن طريق التناقض كطريقة إثبات قابلة للتطبيق، أي استنتاج من ، لا يزالون قادرين على استنتاج من . بالنسبة لهم، هي عبارة أضعف تمامًا من .[58]
تعرف الشكلية الرياضيات من خلال رموزها وقواعد العمل عليها. عرّف هاسكل كاري الرياضيات ببساطة على أنها «علم الأنظمة الرسمية».[59] النظام الرسمي عبارة عن مجموعة من الرموز أو الرموز المميزة وبعض القواعد المتعلقة بكيفية دمج الرموز المميزة في صيغ. في الأنظمة الرسمية، كلمة بديهية لها معنى خاص يختلف عن المعنى العادي لـ«حقيقة بديهية»، وتُستخدم للإشارة إلى مجموعة من الرموز المميزة المضمنة في نظام رسمي معين دون الحاجة إلى اشتقاقها باستخدام قواعد النظام.
الرياضيات علما
أشار عالم الرياضيات الألماني كارل فريدريش غاوس إلى الرياضيات باسم «ملكة العلوم».[49] في الآونة الأخيرة، أطلق ماركوس دو سوتوي الرياضيات على أنها «ملكة العلوم. القوة الدافعة الرئيسية وراء الاكتشاف العلمي».[60] في (اللاتينية: Regina Scientiarum)، وكذلك في (اللغة الألمانية: Königin der Wissenschaften)، تعني الكلمة المقابلة للعلم «مجال المعرفة»، وكان هذا هو المعنى الأصلي «للعلم» باللغة الإنجليزية أيضًا؛ الرياضيات في هذا المعنى مجال المعرفة. يتبع التخصص الذي يقصر معنى «العلم» على العلوم الطبيعية صعود علم بيكون، الذي يقارن «العلوم الطبيعية» بالمدرسة، الطريقة الأرسطية للاستفسار من المبادئ الأولى. دور التجريب والملاحظة التجريبية ضئيل في الرياضيات، مقارنة بالعلوم الطبيعية مثل البيولوجياوالكيمياءوالفيزياء. صرح ألبرت أينشتاين بأنه «بقدر ما تشير قوانين الرياضيات إلى الواقع، فهي غير مؤكدة، وبقدر ما تكون مؤكدة، فإنها لا تشير إلى الواقع».(4)
يعتقد العديد من الفلاسفة أن الرياضيات ليست قابلة للدحض تجريبيًّا، وبالتالي فهي ليست علمًا وفقًا لتعريف كارل بوبر.[61] ومع ذلك، في ثلاثينيات القرن العشرين، أقنعت نظريات غودل عدم الاكتمال العديد من علماء الرياضيات بأنه لا يمكن اختزال الرياضيات إلى المنطق وحده، وخلص كارل بوبر إلى أن «معظم النظريات الرياضية هي، مثل نظريات الفيزياءوالبيولوجيا، استنتاجي افتراضي؛ فالرياضيات البحتة استنتاجية. أقرب إلى العلوم الطبيعية التي فرضياتها هي التخمينات، مما بدا حتى في الآونة الأخيرة».[62] قام مفكرون آخرون، وخاصة إمري لاكاتوس، بتطبيق نسخة من قبول الدحض على الرياضيات نفسها.[63][64]
وجهة نظر بديلة هي أن بعض المجالات العلمية (مثل الفيزياء النظرية) هي رياضيات مع البديهيات التي تهدف إلى تتوافق مع الواقع. تشترك الرياضيات كثيرًا في العديد من المجالات في العلوم الفيزيائية، لا سيما استكشاف النتائج المنطقية للافتراضات. يلعب الحدس والتجريب أيضًا دورًا في صياغة التخمينات في كل من الرياضيات والعلوم الأخرى. تستمر الرياضيات التجريبية في الأهمية داخل الرياضيات، ويلعب الحساب والمحاكاة دورًا متزايدًا في كل من العلوم والرياضيات.
تتنوع آراء علماء الرياضيات حول هذه المسألة. يشعر العديد من علماء الرياضيات(12) أن تسمية منطقتهم بالعلم هو التقليل من أهمية جانبها الجمالي، وتاريخها في الفنون الليبرالية التقليدية السبعة؛ يشعر الآخرون أن تجاهل علاقتها بالعلوم هو غض الطرف عن حقيقة أن العلاقة بين الرياضيات وتطبيقاتها في العلوموالهندسة دفعت الكثير من التطور في الرياضيات. إحدى الطرق التي يلعب بها هذا الاختلاف في وجهات النظر هي النقاش الفلسفي حول ما إذا كان يتم إنشاء الرياضيات (كما في الفن) أو اكتشافها (كما في العلوم). من الشائع رؤية الجامعات مقسمة إلى أقسام تتضمن تقسيمًا للعلوم والرياضيات، مما يشير إلى أن الحقول ينظر إليها على أنها متحالفة ولكنها لا تتزامن. في الممارسة العملية، يتم تجميع علماء الرياضيات عادة مع العلماء على المستوى الإجمالي ولكن يتم فصلهم في مستويات أدق. هذا هو واحد من العديد من القضايا التي تتناولها فلسفة الرياضيات.
تنشأ الرياضيات من العديد من أنواع المسائل المختلفة. في البداية وجدت هذه في التجارة، وقياس الأراضي، والهندسة المعماريةوعلم الفلك في وقت لاحق؛ اليوم، تشير جميع العلوم إلى المسائل التي يدرسها علماء الرياضيات، وتنشأ العديد من المسائل داخل الرياضيات نفسها. على سبيل المثال، اخترع الفيزيائي ريتشارد فاينمان صياغة متكاملة لميكانيكا الكم باستخدام مزيج من المنطق الرياضي والبصيرة الفيزيائية، وهناك نظرية الأوتار أيضًا، وهي نظرية علمية لا تزال قيد التطور تحاول توحيد القوى الأساسية الأربعة للطبيعة، لا تزال تلهم المزيد من التطوير في الرياضيات الجديدة.[65]
بعض مجالات الرياضيات ذات صلة فقط في المجال الذي تتعامل معه، ويتم تطبيقها لحل المزيد من المسائل في هذا المجال. ولكن غالبًا ما تثبت الرياضيات المستوحاة من مجال واحد أنها مفيدة في العديد من المجالات، وتنضم إلى المجموعة العامة من المفاهيم الرياضية. غالبًا ما يتم التمييز بين الرياضيات البحتةوالرياضيات التطبيقية. ومع ذلك، غالبًا ما تتحول موضوعات الرياضيات البحتة إلى تطبيقات، على سبيل المثال نظرية الأعداد في التشفير. هذه الحقيقة الرائعة، وهي أن الرياضيات «البحتة» غالبًا ما تتحول إلى تطبيقات عملية، هو ما أسماه يوجين ويغنر «الفعالية غير المعقولة للرياضيات».[66] كما هو الحال في معظم مجالات الدراسة، أدى انفجار المعرفة في العصر العلمي إلى التخصص؛ حيث يوجد الآن المئات من المجالات المتخصصة في الرياضيات وأحدث تصنيف لمواد الرياضيات يصل إلى 46 صفحة.[67] دمجت العديد من مجالات الرياضيات التطبيقية مع التقاليد ذات الصلة خارج الرياضيات وأصبحت التخصصات في حد ذاتها، بما في ذلك الإحصاءات، وبحوث العمليات، وعلوم الحاسوب.
بالنسبة لأولئك الذين يميلون رياضيا، غالبا ما يكون هناك جانب جمالي محدد لكثير من الرياضيات. يتحدث العديد من علماء الرياضيات عن أناقة الرياضيات، وعلم الجمال الداخلي والجمال الداخلي. تقدر البساطة والعمومية. هناك جمال في دليل بسيط وأنيق، مثل دليل إقليدس على وجود عدد لا نهائي من الأعداد الأولية، وبأسلوب عددي أنيق يسرع الحساب، مثل تحويل فورييه السريع. أعرب غودفري هارولد هاردي في مقالته دفاع رياضياتي عن اعتقاده بأن هذه الاعتبارات الجمالية كافية بحد ذاتها لتبرير دراسة الرياضيات البحتة. حدد معايير مثل الأهمية وعدم اليقين والحتمية والاقتصاد كعوامل تسهم في جمالية رياضية.[68] غالبًا ما يبحث البحث الرياضي عن ميزات مهمة لكائن رياضي. إن النظرية التي يتم التعبير عنها كتوصيف للكائن بهذه الميزات هي الجائزة.
شعبية الرياضيات المسلية سواء في حل الألغاز الرياضية أو الألعاب. هي علامة أخرى على المتعة التي يجدها الكثيرون في حل الأسئلة الرياضية. وعلى الطرف الاجتماعي الآخر، لا يزال الفلاسفة يجدون مسائل في فلسفة الرياضيات، مثل طبيعة البرهان الرياضي.[69]
معظم الرموز الرياضية المستخدمة اليوم لم يتم اختراعها حتى القرن السادس عشر.[70] قبل ذلك، تم كتابة الرياضيات بالكلمات، مما يحد من الاكتشافات الرياضية.[71] كان أويلر (1707-1783) مسؤولًا عن العديد من الرموز المستخدمة اليوم. التدوين الحديث يجعل الرياضيات أسهل بكثير بالنسبة للمحترفين، ولكن المبتدئين غالبا ما يجدونها شاقة. وفقا لباربرا أوكلي، يمكن أن يعزى ذلك إلى حقيقة أن الأفكار الرياضية هي أكثر تجريدية وأكثر تشفيرًا من أفكار اللغة الطبيعية.(6) على عكس اللغة الطبيعية، حيث يمكن للناس في كثير من الأحيان مساواة كلمة (مثل الشجرة) مع الشيء المادي الذي تقابله، فإن الرموز الرياضية مجردة، وتفتقر إلى أي تناظرية مادية.(7) الرموز الرياضية مشفرة أيضًا بدرجة أكبر من الكلمات العادية، مما يعني أن الرمز الواحد يمكن أن يشفر عددًا من العمليات أو الأفكار المختلفة.(8)
قد يصعب فهم اللغة الرياضية بالنسبة للمبتدئين لأن المصطلحات الشائعة، مثل أو فقط، لها معنى أكثر دقة من المصطلحات المستخدمة في الكلام اليومي، بينما تشير المصطلحات الأخرى مثل «فتح» و«حقل» إلى أفكار رياضية محددة، لا تغطيها معاني العلمانيين. تتضمن اللغة الرياضية أيضًا العديد من المصطلحات الفنية مثل التجانس التماثلي والتكامل الذي لا معنى له خارج الرياضيات. بالإضافة إلى ذلك، تنتمي العبارات المختصرة مثل "iff" ل«إذا وفقط إذا» إلى المصطلحات الرياضية. هناك سبب للتدوين الخاص والمفردات الفنية: تتطلب الرياضيات دقة أكثر من الكلام اليومي. يشير علماء الرياضيات إلى هذه الدقة في اللغة والمنطق باسم «الصرامة».
البرهان الرياضي هو في الأساس مسألة صرامة. يريد علماء الرياضيات أن تتبع نظرياتهم من البديهيات عن طريق التفكير المنهجي. هذا هو تجنب «النظريات» الخاطئة، القائمة على الحدس الخاطئ، والتي حدثت العديد من الحالات في تاريخ الموضوع. تباين مستوى الصرامة المتوقعة في الرياضيات بمرور الوقت: توقع اليونانيون حججًا مفصلة، لكن في زمن إسحاق نيوتن كانت الأساليب المستخدمة أقل صرامة. المشاكل الكامنة في التعاريف التي يستخدمها نيوتن ستؤدي إلى عودة التحليل الدقيق والدليل الرسمي في القرن التاسع عشر. سوء الفهم للدقة هو سبب لبعض المفاهيم الخاطئة الشائعة في الرياضيات. اليوم، يواصل علماء الرياضيات الجدال فيما بينهم حول البراهين المدعومة بالحاسوب. نظرًا لأنه يصعب التحقق من الحسابات الكبيرة، فقد لا تكون هذه الأدلة دقيقة بدرجة كافية.(9)
البديهيات في الفكر التقليدي كانت «حقائق بديهية»، ولكن هذا المفهوم إشكالي. على المستوى الرسمي، البديهية هي مجرد سلسلة من الرموز، التي لها معنى جوهري فقط في سياق جميع الصيغ المشتقة من نظام البديهية. كان هدف برنامج هيلبرت وضع جميع الرياضيات على أساس بديهي ثابت، ولكن وفقًا لمبرهنات عدم الاكتمال لغودل، كل نظام بديهي (قوي بما فيه الكفاية) له صيغ غير قابلة للبرهان؛ وبالتالي فإن البديهية النهائية للرياضيات أمر مستحيل. ومع ذلك، غالبًا ما يُتخيل أن الرياضيات (بقدر محتواها الرسمي) ليست سوى نظرية ثابتة في بعض البديهيات، بمعنى أن كل بيان رياضي أو دليل يمكن أن يُطرح في صيغ ضمن نظرية المجموعات.(10)
من أجل توضيح أسس الرياضيات، تم تطوير مجالات المنطق الرياضيونظرية المجموعات. يتضمن المنطق الرياضي الدراسة الرياضية للمنطق وتطبيقات المنطق الرسمي في مجالات أخرى من الرياضيات؛ نظرية المجموعات هي فرع الرياضيات الذي يدرس مجموعات أو مجموعات من الأشياء. نظرية الأصناف، التي تتعامل بطريقة مجردة مع الهياكل الرياضية والعلاقات بينهما، لا تزال قيد التطوير. تصف عبارة «أزمة الأسس» البحث عن أساس صارم للرياضيات التي حدثت في الفترة من عام 1900 إلى 1930 تقريبًا.[75] يستمر بعض الخلاف حول أسس الرياضيات حتى يومنا هذا. تم حفز أزمة المؤسسات من قبل عدد من الخلافات في ذلك الوقت، بما في ذلك الجدل حول مبرهنة كانتور وجدل بروير-هيلبرت.
يهتم المنطق الرياضي بإعداد الرياضيات ضمن إطار بديهي صارم، ودراسة الآثار المترتبة على هذا الإطار. على هذا النحو، تعد موطنًا لمبرهنات عدم الاكتمال لغودل التي تعني -بشكل غير رسمي- (أن أي نظرية مولدة بشكل كفء قادرة على التعبير عن الحساب الابتدائي لا يمكن أن تكون كاملة وراسخة في وقت واحد. على وجه الخصوص، من أجل أي نظرية راسخة مولدة بشكل كفء والتي تبرهن حقيقة حسابية بسيطة، فإنه يوجد عبارة حسابية تكون محققة ولكنها غير مبرهنة بالنظرية). فقد أوضح غودل كيفية بناء بيان رسمي يمثل حقيقة نظرية للأعداد، ولكنه لا يتبع تلك البديهيات. لذلك، لا يوجد نظام رسمي هو البديهية الكاملة لنظرية الأعداد الكاملة. ينقسم المنطق الحديث إلى نظرية الحاسوبية، نظرية النموذج، ونظرية البرهان، ويرتبط ارتباطًا وثيقًا بعلوم الحاسوب النظرية، وكذلك بنظرية الأصناف. في سياق نظرية الحاسوبية.
تعرض العديد من الكائنات الرياضية، مثل مجموعات الأرقام والوظائف، بنية داخلية كنتيجة للعمليات أو العلاقات المحددة في المجموعة. ثم تدرس الرياضيات خصائص تلك المجموعات التي يمكن التعبير عنها من حيث هذا الهيكل؛ على سبيل المثال، تدرس نظرية الأعداد خصائص مجموعة الأعداد الصحيحة التي يمكن التعبير عنها من حيث العمليات الحسابية. علاوة على ذلك، يحدث في كثير من الأحيان أن هذه المجموعات (أو الهياكل) المختلفة تظهر خصائص متشابهة، مما يجعل من الممكن، من خلال خطوة أخرى من التجريد، تحديد البديهيات لفئة من الهياكل، ثم دراسة دفعة واحدة كاملة من الهياكل التي توافق هذه البديهيات. وهكذا يمكن للمرء دراسة المجموعات والحلقات والحقول والأنظمة التجريدية الأخرى معا؛ مثل هذه الدراسات (للهياكل التي تحددها العمليات الجبرية) تشكل مجال الجبر التجريدي.[81]
بحكم عمومية كبيرة، يمكن في كثير من الأحيان تطبيق الجبر التجريدي على المسائل التي تبدو غير ذات صلة. على سبيل المثال، تم حل عدد من المسائل القديمة المتعلقة ببناء البوصلة والبسط باستخدام نظرية غالوا، والتي تتضمن نظرية المجال ونظرية المجموعة. مثال آخر لنظرية الجبر هو الجبر الخطي، وهو الدراسة العامة لمساحات المتجهات، التي تحتوي عناصرها المتجهات على كمية واتجاه، ويمكن استخدامها لنمذجة العلاقات بين نقاط في الفضاء. هذا مثال على الظاهرة المتمثلة في أن المناطق غير المرتبطة أصلًا في الهندسةوالجبر لها تفاعلات قوية للغاية في الرياضيات الحديثة. التوافقيات يدرس طرق تعداد عدد الكائنات التي تناسب بنية معينة.
يعد فهم التغيير ووصفه موضوعًا شائعًا في العلوم الطبيعية، وقد تم تطوير حساب التفاضل والتكامل كأداة للتحقيق فيه. تنشأ وظائفه هنا، كمفهوم مركزي يصف كمية متغيرة. تُعرف الدراسة الدقيقة للأعداد الحقيقية ووظائف المتغير الحقيقي بالتحليل الحقيقي، مع التحليل المركب للحقل المكافئ للأعداد المركبة. يركز التحليل الوظيفي الانتباه على مسافات الوظائف (عادة غير محدودة الأبعاد). واحدة من العديد من تطبيقات التحليل الدالي هي ميكانيكا الكم. تؤدي العديد من المسائل بشكل طبيعي إلى العلاقات بين كمية ما ومعدل التغير، ويتم دراستها على أنها معادلات تفاضلية. يمكن وصف العديد من الظواهر في الطبيعة بواسطة الأنظمة الديناميكية؛ تعمل نظرية الفوضى على تحديد الطرق التي تظهر بها العديد من هذه الأنظمة سلوكًا لا يمكن التنبؤ به ولكنه لا يزال محددًا.[84][85]
تهتم الرياضيات التطبيقية بالطرق الرياضية التي تستخدم عادة في العلوموالهندسةوالأعمالوالاقتصاد[86][87][88]والصناعة. وهكذا، «الرياضيات التطبيقية» هي علم الرياضيات مع المعرفة المتخصصة. يصف مصطلح الرياضيات التطبيقية أيضًا التخصص المهني الذي يعمل فيه علماء الرياضيات على حل المسائل العملية؛ كمهنة تركز على المسائل العملية، تركز الرياضيات التطبيقية على «صياغة ودراسة واستخدام النماذج الرياضية» في العلوموالهندسة وغيرها من مجالات الممارسة الرياضية.
في الماضي، حفزت التطبيقات العملية على تطوير نظريات رياضية، والتي أصبحت بعد ذلك موضوع الدراسة في الرياضيات البحتة، حيث يتم تطوير الرياضيات في المقام الأول من أجلها. وهكذا، يرتبط نشاط الرياضيات التطبيقية ارتباطًا حيويًا بالبحث في الرياضيات البحتة.
تتداخل الرياضيات التطبيقية كثيرًا مع مجال الإحصاء، حيث تصاغ نظريته رياضيا، خاصة مع نظرية الاحتمالات. يقوم الإحصائيون «بإنشاء بيانات منطقية» من خلال أخذ عينات عشوائية وتجارب عشوائية؛[89] يحدد تصميم العينة أو التجربة الإحصائية تحليل البيانات (قبل أن تتوفر البيانات). عند إعادة النظر في البيانات من التجارب والعينات أو عند تحليل البيانات من الدراسات القائمة على الملاحظة، فإن الإحصائيين «يفهمون البيانات» باستخدام فن النمذجة ونظرية الاستدلال مع اختيار النموذج وتقديره؛ يجب اختبار النماذج المقدرة والتوقعات المترتبة على البيانات الجديدة.
تدرس النظرية الإحصائية مشاكل اتخاذ القرار، مثل التقليل إلى الحد الأدنى (من الخسارة المتوقعة) في إجراء إحصائي، مثل استخدام إجراء، على سبيل المثال، اختبار الفرضيات، واختيار الأفضل. في هذه المجالات التقليدية للإحصاءات الرياضية، تتم صياغة مشكلة القرار الإحصائي عن طريق تقليل دالة موضوعية، مثل الخسارة أو التكلفة المتوقعة، في ظل قيود محددة: على سبيل المثال، ينطوي تصميم الاستقصاء في كثير من الأحيان على تقليل تكلفة تقدير متوسط عدد السكان باستخدام محدد معين.[90] نظرًا لاستخدامها في التحسين، تتقاسم النظرية الرياضية للإحصاء الاهتمامات مع علوم القرارات الأخرى، مثل بحوث العمليات، ونظرية التحكم، والاقتصاد الرياضي.[91]
تقترح الرياضيات الحسابية وتدرس أساليب لحل المسائل الرياضية التي تكون عادةً أكبر من قدرة الإنسان العددية.[92] يدرس التحليل العددي طرق المسائل في التحليل باستخدام التحليل الداليونظرية التقريب؛ يشمل التحليل العددي دراسة التقريب والتقدير على نطاق واسع مع اهتمام خاص بأخطاء التقريب. التحليل العددي، وعلى نطاق أوسع، الحوسبة العلمية تدرس أيضًا موضوعات غير تحليلية في العلوم الرياضية، وخاصة المصفوفة الحسابية ونظرية المخططات. مجالات أخرى من اهتمامات الرياضيات الحسابية تشمل الحساب الرمزي.
نالت جائزة وولف في الرياضيات، التي تأسست عام 1978، تقديرًا للإنجاز مدى الحياة، وتم إنشاء جائزة دولية كبرى أخرى، وهي جائزة أبيل، عام 2003. وتم تقديم ميدالية تشيرن عام 2010 تقديرًا للإنجازات الرياضية مدى الحياة. يتم منح هذه الجوائز تقديرًا لمجموعة عمل معينة، والتي قد تكون ابتكارية، أو توفر حلًّا لمسألة بارزة في مجال محدد.
في عام 1900 قام عالم الرياضيات الألماني ديفيد هيلبرت بتجميع قائمة شهيرة تضم 23 مسألة مفتوحة، تسمى «مسائل هيلبرت». حققت هذه القائمة شهرة كبيرة بين علماء الرياضيات، وتم الآن حل معظم الأسئلة. تم نشر قائمة جديدة من سبع مسائل مهمة، بعنوان «جائزة مسائل الألفية»، في عام 2000. واحدة منها فقط، هي فرضية ريمان، تكررت أيضًا في مسائل هيلبرت. إن حل أي من مسائل الألفية يحمل مكافأة قدرها مليون دولار.[94]
يتم الاحتفال في شهر مارس من كل سنة بداية من عام 2007 باليوم العالمي للرياضيات حيث تقام فيه العديد من المسابقات والجوائز.[99][100] أيضًا يتم الاحتفال من كل سنة في 14 مارسبيوم العدد pi (π) حيث يتم الاحتفال بهذا الثابت الرياضي وتحديدًا الساعة 1:59:26 من يوم 14 مارس بسبب كون القيمة التقريبية للعد (π) هي 3.1415926.[101][102]
1. علم الفضاء والعدد والكمية والترتيب، الذي تتضمن طرائقه التفكير المنطقي واستخدام الترميز الرمزي، والذي يتضمن الهندسة والحساب والجبر والتحليل.[8]
2. الرياضيات... هي ببساطة دراسة الهياكل المجردة، أو الأنماط الرسمية للترابط.[103]
3. التفاضل والتكامل هو دراسة التغيير، كيف تتغير الأشياء، ومدى سرعة تغيرها.[104]
4. الاقتباس هو إجابة أينشتاين على السؤال: «كيف يمكن أن تكون الرياضيات، كونها نتاج فكر بشري مستقل عن التجربة، مناسبة بشكل مثير للإعجاب لموضوعات الواقع؟» استلهم هذا السؤال من مقالة يوجين وينر «الفعالية غير المعقولة للرياضيات في العلوم الطبيعية».[105]
5. من الضروري أولاً أن نسأل ما هو المقصود بـ«الرياضيات» عمومًا. ناقش العلماء اللامعون هذه المسألة حتى أصبح وجههم أزرق، ومع ذلك لم يتم التوصل إلى إجماع حول ما إذا كانت الرياضيات هي علم طبيعي، أو فرع من العلوم الإنسانية، أو شكلاً من أشكال الفن.[12]
6. «غالبًا ما يكون حل المشكلات المركزة في الرياضيات والعلوم أكثر جهدًا من التفكير المركّز الذي يشمل اللغة والناس. قد يكون هذا بسبب عدم تطور البشر على مدى آلاف السنين للتلاعب بالأفكار الرياضية، والتي غالبًا ما تكون مشفرة بشكل تجريدي أكثر من تلك الموجودة في اللغة التقليدية.»[106]
7. "ماذا أعني بالتجريد؟ يمكنك الإشارة إلى "بقرة" حية حقيقية تمضغ طعامها في مرعى وتساويها بالحروف
"ب – ق – ر – ة" على الصفحة. ولكن لا يمكنك ذلك إلا بالاستعانة ب"علامة الجمع" الحقيقية التي صصمم الرمز "+" لها، الفكرة الكامنة وراء علامة الجمع هي أكثر "تجريدا"."[106]
8. «من خلال» التشفير«، أعني أن رمزًا واحدًا يمكن أن يمثل عددًا من العمليات أو الأفكار المختلفة، تمامًا كما ترمز علامة الضرب إلى الإضافة المتكررة».[106]
9. «يشتكي البعض من أنه لا يمكن التحقق من برنامج الحاسوب بشكل صحيح»، (في إشارة إلى إثبات هاكين - أبل لنظرية الألوان الأربعة).[107]
10. من بين الفروع العديدة لنظرية مجموعات الرياضيات الحديثة، تحتل نظرية المجموعات مكانًا فريدًا: مع استثناءات قليلة نادرة، يمكن اعتبار الكيانات التي يتم دراستها وتحليلها في الرياضيات على أنها مجموعات معينة أو فئات معينة من الكائنات.[108]
11. تعتبر ميدالية فيلدز الآن بلا منازع أفضل جائزة معروفة وأكثرها تأثيرًا في الرياضيات.[109]
12. انظر، على سبيل المثال، بيان بيرتراند راسل «الرياضيات، إذا نظرنا إليها بشكل صحيح، لا تمتلك الحقيقة فحسب، بل الجمال الأسمى...» في كتابه تاريخ الفلسفة الغربية.
^ اب"mathematics, n.". Oxford English Dictionary. Oxford University Press. 2012. مؤرشف من الأصل في 2019-11-16. اطلع عليه بتاريخ 2012-06-16.
^Ramana (2007). Applied Mathematics. Tata McGraw–Hill Education. ص. 2.10. ISBN:978-0-07-066753-2. الدراسة الرياضية للتغيير أو الحركة أو النمو أو الاضمحلال هي حساب التفاضل والتكامل.
^ ابجدهMura, Roberta (ديسمبر 1993). "Images of Mathematics Held by University Teachers of Mathematical Sciences". Educational Studies in Mathematics. ج. 25 ع. 4: 375–385. DOI:10.1007/BF01273907. JSTOR:3482762.
^Devlin, Keith, Mathematics: The Science of Patterns: The Search for Order in Life, Mind and the Universe (Scientific American Paperback Library) 1996, ISBN 978-0-7167-5047-5
^Wigner, Eugene (1960). "The Unreasonable Effectiveness of Mathematics in the Natural Sciences". Communications on Pure and Applied Mathematics. 13 (1): 1–14. Bibcode:1960CPAM...13....1W. doi:10.1002/cpa.3160130102. Archived from the original on February 28, 2011. نسخة محفوظة 05 مايو 2019 على موقع واي باك مشين.
^IREG Observatory on Academic Ranking and Excellence. IREG List of International Academic Awards(PDF). Brussels: IREG Observatory on Academic Ranking and Excellence. مؤرشف من الأصل(PDF) في 2019-03-12. اطلع عليه بتاريخ 2018-03-03.
^Zheng، Juntao؛ Liu، Niancai (2015). "Mapping of important international academic awards". Scientometrics. ج. 104: 763–791. DOI:10.1007/s11192-015-1613-7.
^ ابجSnapper، Ernst (سبتمبر 1979). "The Three Crises in Mathematics: Logicism, Intuitionism, and Formalism". Mathematics Magazine. ج. 52 ع. 4: 207–16. DOI:10.2307/2689412. JSTOR:2689412.
^du Sautoy، Marcus (يونيو 25, 2010). "Nicolas Bourbaki". A Brief History of Mathematics. وقع ذلك في min. 12:50. BBC Radio 4. مؤرشف من الأصل في ديسمبر 16, 2016. اطلع عليه بتاريخ أكتوبر 26, 2017.
^Shasha, Dennis Elliot؛ Lazere, Cathy A. (1998). Out of Their Minds: The Lives and Discoveries of 15 Great Computer Scientists. Springer. ص. 228.
موسوعة الرياضيات موسوعة على الإنترنت من سبرنجر، عمل مرجعي للمرحلة ما بعد الجامعية لما يزيد عن 8,000 إدخال، تشرح ما يقرب من 50,000 مفهوم رياضي. (بالإنجليزية)
This article is about the depopulated Palestinian village in the District of Jenin. For other uses, see Mazar. Village in Jenin, Mandatory PalestineAl-Mazar المزارVillageEtymology: shrine, a place one visits[1] 1870s map 1940s map modern map 1940s with modern overlay map A series of historical maps of the area around Al-Mazar, Jenin (click the buttons)Al-MazarLocation within Mandatory PalestineCoordinates: 32°31′38″N 35°21′33″E / 32.52722°N 35.35917°E...
Den här artikeln behöver källhänvisningar för att kunna verifieras. (2022-09) Åtgärda genom att lägga till pålitliga källor (gärna som fotnoter). Uppgifter utan källhänvisning kan ifrågasättas och tas bort utan att det behöver diskuteras på diskussionssidan. Insee-nummer, (på franska Code Insee eller Code INSEE) är ett system som används i Frankrike för att katalogisera olika typer av enheter, såsom kommuner och departement. Se även INSEE
В Википедии есть статьи о других людях с такой фамилией, см. Заболоцкий. Николай Алексеевич Заболоцкий Николай Заболоцкий, 1948 год Имя при рождении Николай Алексеевич Заболотский Дата рождения 24 апреля (7 мая) 1903 Место рождения cельскохозяйственная ферма Казанского губернс
ثعبان النظام لينكسمايكروسوفت ويندوزتي آر إس 80 تاریخ الإصدار أكتوبر 197625 يناير 2005[1] نوع اللعبة لعبة ألغاز تعديل مصدري - تعديل سنيك (بالإنجليزية: Snake) هي لعبة فيديو ظهرت في السبعينات من القرن العشرين الميلادي. أنواع لعبة الثعبان هناك نوعان من لعبة الثعبا...
هذه المقالة تحتاج للمزيد من الوصلات للمقالات الأخرى للمساعدة في ترابط مقالات الموسوعة. فضلًا ساعد في تحسين هذه المقالة بإضافة وصلات إلى المقالات المتعلقة بها الموجودة في النص الحالي. (يوليو 2019) منتخب أنغولا لكرة القدم للسيدات بلد الرياضة أنغولا الفئة كرة القدم للسيدات&...
?PolacanthinaeЧас існування: пізня юра - пізня крейда 130–125 млн р. т. PreꞒ Ꞓ O S D C P T J K Ꝑ N ▼ Gastonia Біологічна класифікація Царство: Тварини (Animalia) Тип: Хордові (Chordata) Клас: Плазуни (Reptilia) Надряд: Динозаври Ряд: †Птахотазові (Ornithischia) Підряд: †Thyreophora Інфраряд: †Анкілозаври (Ankylosauria)
Council of State of Oman مجلس الدولة العمانيMajlis ad-Dawla al-ʿUmāniyyiTypeTypeUpper house of the Council of Oman Term limits4 yearsHistoryFoundedNovember 1997LeadershipChairmanAbdulmalik Al Khalili[1] since 3 November 2020 Deputy chairmanAlkhattab bin Ghalib Alhinai[1] StructureSeats83Political groups Non-partisan (83)ElectionsVoting systemAppointment by the Sultan of OmanMeeting placeMuscat The Council of State (Arabic: مجلس الدولة الع...
Japanese aircraft manufacturer and aviation engine manufacturer throughout World War II Nakajima Aircraft CompanyFounded1918FounderChikuhei NakajimaDefunct1945SuccessorFuji Heavy Industries (Subaru Corporation)HeadquartersTokyo, Japan Founder, Chikuhei Nakajima The Nakajima Aircraft Company (中島飛行機株式会社, Nakajima Hikōki Kabushiki Kaisha) was a prominent Japanese aircraft manufacturer and aviation engine manufacturer throughout World War II. It continues as the car and aircraf...
Swingin' AimeeSampul album fisikAlbum studio karya Aimee SarasDirilis2014Genrejazz, swing, BroadwayDurasi38:46LabelRooftopsound RecordsKronologi Aimee Saras -String Module Error: Match not foundString Module Error: Match not found Swingin' Aimee(2014) -String Module Error: Match not foundString Module Error: Match not found Sampul alternatifSampul album versi digital Swingin' Aimee merupakan sebuah album musik perdana milik penyanyi, aktris film dan teater, serta vokalis The Spouse, Aimee...
Part of a series on theEastern Orthodox ChurchMosaic of Christ Pantocrator, Hagia Sophia Overview Structure Theology (History of theology) Liturgy Church history Holy Mysteries View of salvation View of Mary View of icons Background Crucifixion / Resurrection / Ascensionof Jesus Christianity Christian Church Apostolic succession Four Marks of the Church Orthodoxy Organization Autonomy Autocephaly Patriarchate Ecumenical Patriarch Episcopal polity Canon law Clergy Bishop...
الاغماء الحراري معلومات عامة الاختصاص طب الطوارئ من أنواع أمراض الحرارة تعديل مصدري - تعديل الإغماء الحراري هو آخر مرحلة في نفس عملية ضربة الشمس ، ويحدث في ظل ظروف مماثلة لضربة الشمس ولا يتميز عن هذا الأخير بواسطة بعض السوابق.[1][2][3] تتمثل الأعراض الأس...
Brush for hair care A hairbrush is a brush with rigid or soft spokes used in hair care for smoothing, styling, and detangling human hair, or for grooming an animal's fur. It can also be used for styling in combination with a curling iron or hair dryer. Julienne Mathieu's hair being brushed, then combed and styled in the 1908 French film Hôtel électrique. A flat brush is normally used for detangling hair, for example after sleep or showering. A round brush can be used for styling and curling...
This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Acid Mother's Temple & The Melting Paraiso U.F.O. – news · newspapers · books · scholar · JSTOR (May 2019) (Learn how and when to remove this template message) 1996 studio album by Acid Mother's Temple & The Melting Paraiso U.F.O.Acid Mother's Temple & The Meltin...
Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Tri Sakti Purwosari Makmur – berita · surat kabar · buku · cendekiawan · JSTORPT Tri Sakti Purwosari MakmurNama dagangKT&G TSPM (merek Nasional)KT&G Indonesia (merek Global)JenisPublikIndustriRok...
Not to be confused with twistor theory. Early type of computer memory Computer memory and data storage types General Memory cell Memory coherence Cache coherence Memory hierarchy Memory access pattern Memory map Secondary storage MOS memory floating-gate Continuous availability Areal density (computer storage) Block (data storage) Object storage Direct-attached storage Network-attached storage Storage area network Block-level storage Single-instance storage Data Structured data Unstructured d...
Historic house in South Carolina, United States United States historic placeMarshlands Plantation HouseU.S. National Register of Historic Places Show map of South CarolinaShow map of the United StatesLocation217 Ft. Johnson Road, Charleston, South CarolinaCoordinates32°45′01″N 79°54′03″W / 32.75028°N 79.90083°W / 32.75028; -79.90083Built1810Architectural styleFederalNRHP reference No.73001700[1]Added to NRHPMarch 30, 1973 The landward...
Species of mongoose from Africa Banded mongoose Banded mongooses (M. m. grisonax) at Etosha National Park, northern Namibia Conservation status Least Concern (IUCN 3.1)[1] Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Class: Mammalia Order: Carnivora Suborder: Feliformia Family: Herpestidae Genus: Mungos Species: M. mungo Binomial name Mungos mungo(Gmelin, 1788) range of the banded mongoose Banded mongoose (M. m. colonus) at Maasa...
American actor George TynePublicity Photo of George TyneBornMartin Yarus(1917-02-06)February 6, 1917Philadelphia, Pennsylvania, U.S.DiedMarch 7, 2008(2008-03-07) (aged 91)Los Angeles, California, U.S.Other namesBuddy YarusOccupation(s)Actor, directorYears active1967-1981Known forA Walk in the SunSpouseEthel Tyne (?-2003) (her death) Martin Yarus (February 6, 1917 – March 7, 2008), better known as George Tyne, was an American stage and film actor and television director. ...
2012 studio album by GoGo PenguinFanfaresStudio album by GoGo PenguinReleasedCD: 19 November 2012 (2012-11-19) Vinyl: 14 March 2014 (2014-03-14)[1]RecordedJanuary 2012 at The Lodge Recording StudioGenreJazz, nu-jazz[2]Length35:11LabelGondwana RecordsGoGo Penguin chronology Fanfares(2012) v2.0(2014) Professional ratingsReview scoresSourceRatingAll About Jazz[3]The Guardian[4] Fanfares is the debut album by jazz piano trio Go...