الفضاء الاتجاهي أو الفضاء المتجهي أو الفضاء الشعاعي كائن أساسي في دراسة الجبر الخطي.[1][2][3] هو مجموعة من عدة متجهات والتي هي كائنات يمكن إضافتها مع بعضها البعض وضربها بأعداد، التي يطلق عليها كميات قياسية في هذا السياق. غالبا ما تكون الكميات القياسيات أعدادا حقيقية، ولكن بالإمكان اختيار فضاءات اتجاهية مع كميات قياسية من أعداد مركبة أو أعداد نسبية أو حتى حقول عامة. عمليتا جمع المتجهات وضرب متجهة ما في كمية قياسية ينبغي لهما أن تحققا مجموعة من المتطلبات تدعى موضوعات جاءت أسفله. فضاء المتجهات الإقليدية هو مثال على الفضاءات المتجهية حيث يمكن أن تمثلن كميات فيزيائية مختلفة كالقوى وغيرها.
فعندما تعتبر المتجهات مع العمليات المطبقة عليها من جمعوضرب قياسي وبعض العمليات الأخرى مثل الانغلاقوالتجميعية، فإنه يوصل إلى وصف كائن رياضي يُدعى فضاءً اتجاهياً.
المتجهات في الفضاء الاتجاهي لا تمثل تحديداً متجهات هندسية بل يمكن أن تكون أي كائن رياضي يحقق بدهيات الفضاء الشعاعي. فمتعددات الحدود من الدرجة ≤n على سبيل المثال، بمعاملات حقيقية تشكل فضاءً شعاعياً.
تدرس الفضاءات المتجهية في إطار الجبر الخطي وهي مفهومة بشكل كامل من هذا المنطلق، حيث يتميز كل فضاء متجهي ببُعده. يحدد هذا البُعد عدد الاتجاهات (أو الحركات) المستقلة عن بعضها البعض داخل الفضاء المعين. قد تُضاف إلى فضاء متجهي بُنى أخرى كالمعياروالجداء الداخلي.
المثال الثاني على الفضاءات المتجهية هو الأزواج من الأعداد الحقيقية و (الترتيب الذي جاءا فيه العددان و مهم يعني بصفة عامة. لهذا السبب سمي هذا الزوج بزوج مرتب).
تعريف شامل
لتكن مجموعة من العناصر (ليس بالضرورة أعداد) مزودة بقانون تركيب داخلي يرمز له بـ (ليس بالضرورة الجمع المألوف)
وليكن حقل تبادلي (استعملت الرموزو لكي لا يتم الخلط بينها وبين و لكنها لا تعدو كونها مجرد رموز)
توزيعية قانون التركيب الخارجي على الجمع الداخلي في
توزيعية قانون التركيب الخارجي على الجمع الداخلي في
توافق الجداء المعرف على مع الجداء الخارجي لـ
العنصر المحايد لعملية الجداء الداخلي في يحقق لكل :
نقول أن هو فضاء متجهي معرف على
تسمية ونرميز
عناصرتسمى المتجهات . تكتب عادة بحروف لاتينية صغيرة و غالبا ما تميز عن كونها مجرد أعداد برسم سهم فوق اسم المتجهة وخصوصا في الفيزياء والهندسة، أو ببساطة قد تكتب بخط غليظ
عناصرتسمى الكميات القياسية أو كميات سُلمية (scalaire). مثل الأعداد الحقيقية أوالأعداد العقدية. عادة ما تُمَيـز عن المتجهات بكتابتها بحروف يونانية صغيرة .
تنبثق الفضاءات المتجهية من الهندسة التآلفية، من خلال تقديم الإحداثيات في المستوى أو في الفضاء ثلاثي الأبعاد. في حوالي عام 1636، أسس كل من ديكارتوفيرماالهندسة التحليلية، وذلك من خلال الربط بين حلول معادلة ذات متغيرين من جهة، ونقط من منحنى في المستوى من جهة ثانية.