疫苗接種(zhòng)[註 1] (页面存档备份,存于互联网档案馆) ,是將疫苗製劑接种到人或動物体内的技術,使接受方获得抵抗某一特定或与疫苗相似病原的免疫力,藉由免疫系統對外來物的辨認,進行抗體的篩選和製造,以產生對抗該病原或相似病原的抗體,進而使受注射者對該疾病具有較強的抵抗能力。
今日醫學上常见的接種方式为注射,而“接種”一词乃是由種痘技術而來,其本意與今日用法有所区别,在現代免疫學研究的運用範疇也有些微差距。
疫苗接種和免疫接種在日常語言中具有相似的含義[1][2]。
目前已知最早使用的疫苗接種可溯源至人痘接种术[來源請求](variolation)。在中國文明,這項技術于公元前200年可能也出现过[3]。清代醫書[4]認為,11世紀起,中國人於北宋時期即開始種天花痘,而另一本醫書則記載[來源請求],更早於唐代即有「江南趙氏始傳鼻苗種痘之法」,且「種痘者八九千人,其莫救者,二三十耳。」顯示該技術對天花的預防頗有成效[5],而據推測可能使用的是毒性較低的天花,使欲免疫天花之受試者接觸患者的膿狀囊皰,但此做法無法確保有效,且風險仍高,死亡率達1~2%,隨後這項技術沿絲路傳播開來。18世紀初種痘技術由君士坦丁堡引入西方。1760年,丹尼爾·伯努利成功地讓世人發現,儘管種痘技術有其危險,仍能為一般預期壽命(life expectancy)延長三年。
英國醫師愛德華·金納聽聞民間普遍相信牛痘可以預防人類天花,因感到好奇的他,於1796年5月14日對一名兒童接種由感染牛痘的農婦手中抽取的膿汁作為疫苗,三個月後,他將天花接種至兒童身上,並證實該名兒童對天花免疫,這個方法因此傳遍整個歐洲,因此在使用拉丁字母的語言中,皆以拉丁文中,代表「牛」的「vacca」作為字源,紀念愛德華·金納使用牛痘作為疫苗實驗的里程碑。
路易·巴斯德並進一步闡釋接種的意義和目的,而其同事(Émile Roux及Duclaux)順著羅伯·柯霍提出的假說,將微生物和該疾病的關係確立。這項發現使巴斯德得以改良接種技術,隨後於1881年5月5日成功研發綿羊的霍亂疫苗,並於1885年6月6日讓一位兒童接受狂犬病[6]的疫苗注射。倘若不以「疫苗」的初始定義來看,這便是人類史上第一劑注射疫苗。
疫苗接種的主要目的是使身體能夠製造自然的生物物質,用以提升生物體的對病原的辨認和防禦功能,有時類似的病原體可以引起針對同一類病原的免疫反應,因此一個疫苗主要是針對一個疾病,或相似度極高的病原體,例如以牛痘預防天花即為佳例。但20世紀末開始,免疫學家發現疫苗也有治療的可能性,並發展出相關的研究理論和實際用途。
疫苗接種多數時候是一種可以激起個體自然防禦機制的醫療行為,以預防未來可能得到的疾病,這種疫苗接種特稱為預防接種(prophylactic immunization)。白喉、破傷風、百日咳、小兒麻痺、B型流感嗜血桿菌、B型肝炎、結核(預防結核病的卡介苗效果仍未獲得學界一致認同,因此美國、比利時和荷蘭都未採用此疫苗。)、痲疹、德國麻疹、腮腺炎,都是目前最常見的疫苗種類。由於需要以疫苗防範的疾病非常多,因此為簡化繁複的接種程序,有些實驗室致力發展多效疫苗,而目前已經使用的至少有以下二種三联疫苗(三合一疫苗),分別是「白喉、破傷風、百日咳混合疫苗」(简称“百白破”,DTP,Di-Te-Per)以及「麻疹、腮腺炎、德國麻疹混合疫苗」(MMR)。由於並非所有疫苗都可同時施打,因此新生兒需接受的疫苗種類仍相當繁瑣。
疫苗不僅可以使接種者罹患該疾病的发病率下降,當一種疫苗所對付之疾病僅感染單一物種時,要消滅病原便有其可行性,例如天花在自然界僅感染人類,當幾乎所有人都接種疫苗後,天花無法繼續傳播,亦無法於其他動物之間蔓延,因此於1980年聯合國宣布天花的滅絕,以及1999年第二型的小兒麻痺亦不復存在。因此逐漸有許多國家取消相關疫苗的接種,也使得未接種疫苗的個體可能在未來受到生物戰爭的威脅。
疫苗也可以用來做積極的免疫治療,這種技術刺激免疫系統大量製作抗體,或是以外來的相應抗體,共同來對付已經感染之患者體內存有的病原,狂犬病疫苗即是運用此原理,同時這種疫苗也可能用作預防性疫苗。而近年對癌症以及愛滋病的研究發現,病變的細胞和一般細胞表面有不同的標記,可能適合作為抗體攻擊的目標,用以治療患者。
疫苗的製作可以經由化學合成,由特定的蛋白質為引,製作出微妙的變化型態,使其能夠與淋巴球進行生化反應,影響抗體的製造;但它也可以是直接透過生物體製造的產物,以活體的病原為起始,藉由實驗控制的特殊環境下使其複製,或是使用死去的病原作為誘引,可以在不傷害其他細胞的情況下只刺激淋巴球。儘管一般認為活體疫苗的效果較好,但相對也較不易保存。因為涉及基因工程,引發研究倫理的問題,目前化學合成的疫苗則較為少用。
由於免疫系統可分辨的免疫(active immunization)。
疫苗除了可提供主動免疫的防範措施,亦可以於狀況緊急時,直接協助患者施打血清型疫苗,亦即一種由具備該疾病抵抗力的個體中,抽取血液並且純化出該種抗體,或是經由生化合成,直接注入患者體內壓制病原的活動力。台灣於2003年SARS流行期間,曾一度未經過政府核准或世界衛生組織相關有效的報告的確認時,因病患狀況危急使用此方式快速抑制病情的惡化,雖成功地爭取時間、搶救病危的數名患者[7],但由於抗體不可重複使用,會受到體內自行代謝分解,個體仍須自行產生抗體,以自發的免疫反應辨識外來物,才能予以記憶並持續製作抗體抵禦病況,才能真正地痊癒,這種疫苗接種引發的免疫反應則稱為被動免疫(passive immunization)。
免疫學研究指出,由於不同的引發模式可以刺激不同的抗體生成,為達最佳預防效果,使受接種者能產生最有效的抗體種類,因此一般醫療人員會在較佳的時程建議幼兒接受疫苗接種[8],有時為了增強單種疫苗效力、減少疫苗之間的排斥性,還必須追加施打,因此各國紛紛擬定一套包含各種疫苗的施打時程,讓幼童出生後依照約定的建議日期施打疫苗,協助人民自幼建立較健全的防禦機制,同時全球藥物實驗室並加強混合疫苗的研發,例如肺炎球菌联合疫苗(英语:Pneumococcal conjugate vaccine)(Prevnar)採用結合氏疫苗,針對肺炎雙球菌施以七種病原性物質,ProQuad vaccine則融合既有的MMR混合疫苗和水痘疫苗,都使受施打者免除多次注射的困擾,又達到一針多效的目的。
2002年世界衛生組織發表認為有超過200萬的幼童可能因疫苗而獲救,而最有機會因此防範的兩大疾病則是麻疹和B型肝炎。在法國,由於疫苗的使用,自1950年起某些傳染病的死亡率已經降为三十分之一,如下表所列[9](單位:百萬人死亡率)
疫苗的效用在某些時候卻仍不明朗,回顧19世紀起結核病病例在許多國家中大幅下降,且在疫苗發明之前感染人數即已明顯下滑,流行病學家卻認為此狀況並非受惠於疫苗接種的施行,並指出衛生條件和營養的改善才是根本原因[10] [11] [12];從世界衛生組織大規模的研究中,例如結核病已是地方病的印度,經過該組織對26萬人的追蹤發現卡介苗的效用可能不如預期,研究人員在接種卡介苗與否的兩組研究對象中,並未發現明顯的差距[13];另一份報告則指出,在印度針對36萬6625人的研究發現卡介苗甚至對肺結核毫無預防功效[14]。事實上,霍亂疫苗的實際功效也不明確,一份臨床論文為測試其效用,在印尼霍亂較少發生的地區抽取6萬人做樣本,亦發現沒有顯著的預防效果[15],因此,在法國目前除觀光客以外,已不再要求霍亂疫苗的注射[16]。
世界衛生組織曾於1986年定義區域整體健康的概念後[17],陸續推動著健康城市(Healthy Cities)計畫,隨後更經過數次會議增修整合內容後,於1998年出版品中詳細敘述32項健康指標,將疫苗接種列為醫療服務部分的重點之一,明確指出一地區兒童接受法定疫苗接種之比率,足以影響一座城市的健康度[18],[19]。儘管如此,歐洲仍有許多國家,如英國、愛爾蘭、德國、西班牙、丹麥、芬蘭、瑞典、冰島、盧森堡、荷蘭、瑞士等,在法律上並不要求人民接受任何疫苗接種。
有些國家基於個人健康以及當地疾病盛行狀況,或為自發,或受世界衛生組織協助推動,強制要求國民接種部分疫苗種類,如比利時的小兒麻痺、義大利規定白喉、B型肝炎、小兒麻痺,葡萄牙則要求12至18個月的嬰兒施打破傷風和白喉疫苗[20]。有時為以全體人民作防疫目標,政府可能部分或全面以政府津貼或社會保險,補助居民預防接種所需之診療費用以茲吸引;反之,對違抗者卻可透過法律途徑施以罰款、拘留、隔離、強制投藥、強制接種、甚至有期徒刑等法律責任[21],[22],試圖以懷柔高壓並濟的手段,達到公共衛生的目的。
台灣自1948年起引進第一支類毒素疫苗[23],已陸續訂定衛生法規試著完善預防接種的制度,依該法規,嬰、幼兒童以及小學生都必須依照建議時程接受預防接種[24]。而2003年SARS疫情在東亞爆發,將該地區醫療衛生體系宜加改進重點透明化,促使中國大陸進行制度革新,2005年始正式施行預防接種的各項法規,並且要求各相關機關確實執行,以加緊改善當地人民的健康品質[25]。
疫苗接種的使用成功地消滅了天花這種具有高度傳染力且極易致死的人類疾病,今日有越來越多的新興疾病,由於大多數人免疫系統未有遭遇的經驗,一旦傳入人群中,極易發生大流行,此時若有疫苗的使用,將可有效阻止疫情的爆發,這種情況便稱為族群免疫力(英語:herd immunity),尤其當一種傳染病僅在特定或極少數物種間流傳時,甚至可如同天花滅絕一般執行消滅計畫,將流行病控制為地方病,進一步予以消除,例如小兒麻痺僅在人類中傳染,目前已受侷限為極少數國家之地方病,但因部分感染區不易完全實施該項計畫,直至2006年底消滅小兒麻痺的預定日已兩度延期。
疫苗接種也有風險,有時可導致接種者不適甚至死亡,但多數副作用僅會造成的微小的影響,嚴重的狀況較少發生,但仍應多加留心。[26]
下列各主要疫苗可能帶來的併發症及傷害(依照疫苗名稱筆劃排序):
有時儘管接受疫苗接種者,接種前生理狀況正常,疫苗品質亦受到多重管制和驗證[46],仍有可能發生醫療人員操作疏失,例如打錯疫苗、重複注射、或難以預期的併發症、人體傷害、動物傷害,因而導致法律糾紛、引起群眾對法律的質疑及對醫療照護失去信心[47],[48],[49]。但較為完善的法律,通常對這類可能疏失都會事先予以多方規範,以確保醫療各項環節的安全,包括疫苗的保存方式、檢驗保存後的效力,以及環境不利疫苗保存時的防範和配套措施,自取用之核對、乃至空針銷毀的各項步驟安全都有限制,再加上對注射者身心狀況的確認、對狀況異常者的處理方法也有較明確的處理[50],若能確實執行多重而積極的保護措施,一般情況下預防接種工作仍有其安全性。此外,關於疫苗注射的意義和程序,大眾應具備基本的了解,公共衛生人員也應善盡宣導義務[51],藉以保護大眾權益,如此可以降低事故發生機率,或是在傷害發生時,能夠及時尋求協助或給予適當補償。長久之計則為進一步促使疫苗研究的革新[52],將疫苗所帶來的負面影響減少。