Teoria dos conjuntos

Um diagrama de Venn ilustrando a interseção de dois conjuntos.

Teoria dos conjuntos ou de conjuntos é o ramo da lógica matemática que estuda conjuntos, que (informalmente) são coleções de elementos. Embora qualquer tipo de elemento possa ser reunido em um conjunto, a teoria dos conjuntos é, em geral, investigada com elementos que são relevantes para os fundamentos da matemática.

O estudo moderno da teoria dos conjuntos foi iniciado por Georg Cantor e Richard Dedekind em 1870. Após a descoberta de paradoxos na teoria ingênua dos conjuntos (i.e. sem formalização precisa), numerosos sistemas axiomáticos foram propostos no início do século XX, dos quais a teoria dos conjuntos de Zermelo-Fraenkel, com ou sem o axioma da escolha, são os mais conhecidos e estudados.

A teoria dos conjuntos é comumente empregada como um sistema precursor da matemática, particularmente na forma de teoria dos conjuntos de Zermelo-Fraenkel com o axioma da escolha. Além de seu papel fundamental, a teoria dos conjuntos é um ramo da matemática em si própria, com uma comunidade de pesquisa ativa. Pesquisas contemporâneas em teoria dos conjuntos incluem uma diversa coleção de temas, variando da estrutura da reta dos números reais ao estudo da consistência de grandes cardinais.

Histórico

Temas matemáticos geralmente surgem e evoluem através de interações entre muitos pesquisadores. Teoria dos conjuntos, no entanto, foi fundada por um único artigo de 1874, por Georg Cantor: "A respeito de uma propriedade característica de todos os números algébricos reais".[1][2]

Desde o século V a.C., começando com o matemático grego Zenão de Eleia no ocidente e os primeiros matemáticos indianos no oriente, os matemáticos têm se debatido com o conceito de infinito. Especialmente notável é o trabalho de Bernard Bolzano[3] na primeira metade do século XIX. A compreensão moderna do conceito de infinito começou em 1867–1871, com os trabalhos de Cantor em teoria dos números, teoria das funções e séries trigonométricas.[4] Um encontro em 1872 entre Cantor e Richard Dedekind influenciou o pensamento de Cantor e culminou no artigo de Cantor 1874.

O trabalho de Cantor inicialmente dividiu os matemáticos de sua época. Enquanto Karl Weierstrass e Dedekind apoiavam Cantor, Leopold Kronecker, hoje visto como um dos fundadores do construtivismo matemático, era contra. A teoria dos conjuntos cantoriana, afinal, tornou-se amplamente difundida, devido à utilidade dos conceitos cantorianos, tais como correspondência um-para-um entre conjuntos, sua prova de que há mais números reais que inteiros, e a "infinidade de infinitos" ("paraíso de Cantor") que a operação conjunto das partes dá origem. A utilidade da teoria dos conjuntos desembocou em 1898 no artigo "Mengenlehre" de Arthur Schoenflies para a Enciclopédia de Ciências Matemáticas organizada por Felix Klein e Wilhelm Franz Meyer.

A onda de entusiasmo seguinte na teoria dos conjuntos chegou por volta de 1900, quando foi descoberto que algumas interpretações da teoria dos conjuntos Cantoriana dava origem a várias contradições, chamadas antinomias ou paradoxos. Bertrand Russell e Ernst Zermelo encontraram o mais simples e mais conhecido paradoxo, hoje chamado paradoxo de Russell: considere "o conjunto de todos os conjuntos que não são membros de si mesmos". Isto leva a uma contradição, uma vez que ele deve ser e não ser um membro de si mesmo. Em 1899, Cantor se questionou: "qual é o número cardinal do conjunto de todos os conjuntos?" e obteve um paradoxo relacionado. Russell usou seu paradoxo como tema em sua revisão de 1903 da matemática continental em seu livro "Os Princípios da Matemática" (não confundir com o Principia Mathematica).

A força da teoria dos conjuntos foi tal que o debate sobre os paradoxos não a levou ao abandono. O trabalho de Zermelo em 1908 e Abraham Fraenkel e Thoralf Skolem em 1922 resultou na canônica teoria axiomática dos conjuntos ZFC. O trabalho de analistas, como Henri Lebesgue, demonstrou a grande utilidade matemática da teoria dos conjuntos. Essa teoria é comumente usada como fundamento, embora em algumas áreas - como a geometria algébrica e a topologia algébrica - a teoria das categorias seja considerada uma base preferencial.

Conceitos básicos

Teoria dos conjuntos começa com uma fundamental relação binária entre um objeto o e um conjunto A. Se o é um membro (ou elemento) de A, escreve-se oA. Uma vez que conjuntos são objetos, a relação de pertinência também pode relacionar conjuntos. Um conjunto é descrito listando seus elementos separados por vírgula ou através de alguma propriedade que determine seus elementos.

Se todos os elementos do conjunto A também são elementos do conjunto B, então A é um subconjunto de B, denotado por AB. Por exemplo, {1,2} é um subconjunto de {1,2,3} , mas {1,4} não é. A partir desta definição, é evidente que um conjunto é um subconjunto de si mesmo; nos casos em que se deseja evitar isso, o termo subconjunto próprio é definido para excluir esta possibilidade. Note que {1} é subconjunto, e não elemento, de {1,2,3}; note também que 1 é membro, e não subconjunto, de {1,2,3}.

Assim como a aritmética caracteriza operações binárias sobre números, a teoria dos conjuntos caracteriza operações binárias sobre conjuntos. Uma lista parcial de tais relações:

  • União dos conjuntos A e B, denotada por AB, é o conjunto de todos os objetos que são membros de A, ou B, ou ambos. A união de {1, 2, 3} e {2, 3, 4} é o conjunto {1, 2, 3, 4}.
  • Interseção dos conjuntos A e B, denotada por AB, é o conjunto de todos os objetos que são membros de ambos A e B. A interseção de {1, 2, 3} e {2, 3, 4} é o conjunto {2, 3}.
  • Diferença de conjuntos de U e A, denotada por U \ A é o conjunto de todos os membros de U que não são membros de A. A diferença de conjuntos {1,2,3} \ {2,3,4} é {1}, enquanto a diferença de conjuntos {2,3,4} \ {1,2,3} é {4}. Quando A é um subconjunto de U, a diferença dos conjuntos U \ A é também chamada de complemento de A em U. Neste caso, se a escolha de U é clara a partir do contexto, a notação Ac é algumas vezes usada no lugar de U \ A, particularmente se U é um conjunto universo como no estudo de diagramas de Venn.
  • Diferença simétrica dos conjuntos A e B é o conjunto de todos os objetos que são membros de exatamente um de A e B (elementos que estão em um dos conjuntos, mas não em ambos). Por exemplo, para os conjuntos {1,2,3} e {2,3,4}, o conjunto diferença simétrica é {1,4}. É o conjunto diferença da união e da interseção,, (AB) \ (AB).
  • Produto cartesiano de A e B, denotada por A × B, é o conjunto cujos membros são todos os possíveis pares ordenados (a,b) onde a é um membro de A e b é um membro de B.
  • Conjunto das partes de um conjunto A é o conjunto cujos membros são todos os possíveis subconjuntos de A. Por exemplo, o conjunto das partes de {1, 2} é { {}, {1}, {2}, {1,2} }.

Alguns conjuntos básicos de importância central são o conjunto vazio (o único conjunto que não contém elementos), o conjunto de números naturais, e o conjunto de números reais.

Um pouco de ontologia

Um segmento inicial da hierarquia de von Neumann.

Um conjunto é puro se todos os seus membros são conjuntos, todos os membros de seus membros são conjuntos, e assim por diante. Por exemplo, o conjunto contendo apenas o conjunto vazio é um conjunto puro não vazio. Na teoria dos conjuntos moderna, é comum restringir a atenção para o universo de von Neumann de conjuntos puros, e muitos sistemas da teoria axiomática dos conjuntos são projetados para axiomatizar apenas os conjuntos puros. Há muitas vantagens técnicas com esta restrição, e pequena generalidade é perdida, uma vez que, essencialmente, todos os conceitos matemáticos podem ser modelados por conjuntos puros. Conjuntos no universo de von Neumann são organizados em uma hierarquia cumulativa, com base em quão profundamente seus membros, os membros de membros, etc, são aninhados. A cada conjunto nesta hierarquia é atribuído (por recursão transfinita) um número ordinal , conhecido como a sua 'classe'. A classe de um conjunto puro X é definida como sendo uma mais do que o menor limitante superior das classes de todos os membros de X. Por exemplo, ao conjunto vazio é atribuída a classe 0, enquanto ao conjunto contendo somente o conjunto vazio é atribuída classe 1. Para cada , o conjunto é definido como consistindo de todos os conjuntos puros com classe menor que . O universo de von Neumann como um todo é denotado por .

Teoria axiomática dos conjuntos

Teoria elementar dos conjuntos pode ser estudada de maneira informal e intuitiva, e por isso pode ser ensinada nas escolas primárias usando, por exemplo, diagramas de Venn. A abordagem intuitiva pressupõe que um conjunto pode ser formado a partir da classe de todos os objetos que satisfaçam qualquer condição particular de definição. Esta suposição dá origem a paradoxos, os mais simples e mais conhecidos dos quais são o paradoxo de Russell e o paradoxo de Burali-Forti. A teoria axiomática dos conjuntos foi originalmente concebida para livrar a teoria dos conjuntos de tais paradoxos.[nota 1]

Os sistemas mais amplamente estudados da teoria axiomática dos conjuntos implicam que todos os conjuntos formam uma hierarquia cumulativa. Tais sistemas vêm em dois sabores, aqueles cuja ontologia consiste de:

Os sistemas acima podem ser modificados para permitirem urelementos, objetos que podem ser membros de conjuntos, mas que não são eles próprios conjuntos e não tem nenhum membro.

Os sistemas de Novos Fundamentos NFU (permitindo urelementos) e NF (faltando eles) não são baseadas em uma hierarquia cumulativa. NF e NFU incluem um "conjunto de tudo", em relação a qual cada conjunto tem um complemento. Nestes sistemas os urelementos importam, porque NF, mas não NFU, produz conjuntos para os quais o axioma da escolha não se verifica.

Sistemas da teoria dos conjuntos construtiva, como CST, CZF e IZF, firmam seus conjuntos de axiomas na lógica intuicionista em vez da lógica clássica. No entanto, outros sistemas admitem por padrão a lógica clássica, mas apresentam uma relação de pertencimento não padrão. Estes incluem a teoria dos conjuntos aproximados e a lógica difusa, na qual o valor de uma fórmula atômica incorporando a relação de filiação não é simplesmente Verdadeiro ou Falso. Os modelos booliano valorados de ZFC são um assunto relacionado.

Um enriquecimento do ZFC chamado teoria interna dos conjuntos foi proposto por Edward Nelson em 1977.

Áreas de estudo

A teoria dos conjuntos é a principal área de pesquisa na matemática, com muitas subáreas inter-relacionados. Ademais, a teoria dos conjuntos é mais do que simplesmente descrever conjuntos. Do mesmo modo como, na aritmética, é possível aprender a aplicar operações aritméticas a números, por exemplo, adição ou multiplicação, também é possível definir operações teóricas de conjuntos que gerem novos conjuntos a partir de determinados conjuntos. Exemplificando, as uniões {1, 2} e {2, 3, 4} tornam-se {1, 2, 3, 4}; as interseções {1, 2} e {2, 3, 4} tornam-se {2}. Também há a possibilidade de formar Conjuntos de partes, ou seja, a família de todos os subconjuntos de um conjunto.[5]

Teoria dos conjuntos combinatória

A teoria dos conjuntos combinatória preocupa-se com extensões da combinatória finita para conjuntos infinitos. Isto inclui o estudo da aritmética de cardinais e o estudo de extensões do teorema de Ramsey tais como o teorema de Erdos-Rado.

Teoria descritiva dos conjuntos

Teoria descritiva dos conjuntos é o estudo de subconjuntos da reta real e dos subconjuntos dos espaços poloneses. Ela começa com o estudo das pointclasses na hierarquia de Borel e se estende ao estudo de hierarquias mais complexas, como a hierarquia projetiva e a hierarquia de Wadge. Muitas propriedades dos conjuntos de Borel podem ser estabelecidas em ZFC, , mas a prova de que essas propriedades se verificam para conjuntos mais complicados requer axiomas adicionais relacionados com determinismo e grandes cardinais.

O campo da teoria descritiva dos conjuntos efetiva está entre a teoria dos conjuntos e a teoria da recursão. Ele inclui o estudo de lightface pointclasses, e está intimamente relacionado com a teoria hiperaritmética. Em muitos casos, os resultados da teoria descritiva dos conjuntos clássica têm versões efetivas; em alguns casos, novos resultados são obtidos provando pela versão efetiva primeiro e depois estendendo-os ("relativizando-os") para torná-la mais amplamente aplicáveis.

Uma área recente de pesquisa diz respeito a relações de equivalência de Borel e relações de equivalência decidíveis mais complicadas. Isto tem importantes aplicações para o estudo de invariantes em muitos campos da matemática.

Teoria dos conjuntos nebulosos

Na teoria dos conjuntos como Cantor definiu e Zermelo e Fraenkel axiomatizaram, um objeto ou é um membro de um conjunto ou não. Na teoria dos conjuntos fuzzy esta condição foi relaxada, e desta forma um objeto tem um grau de pertinência em um conjunto, como número entre 0 e 1. Por exemplo, o grau de pertinência de uma pessoa no conjunto de "pessoas altas" é mais flexível do que uma simples resposta "sim" ou "não" e pode ser um número real, tal como 0,75.

Conjuntos fuzzy foram introduzidos simultaneamente[6] por Lotfi A. Zadeh[7] e Dieter Klaua[8] em 1965 como uma extensão da noção clássica de conjunto. Na teoria dos conjuntos clássica, a associação de elementos em um conjunto é avaliada em termos binários de acordo com uma condição bivalente - um elemento ou pertence ou não pertence ao conjunto. Por outro lado, a teoria dos conjuntos fuzzy permite a avaliação gradual da participação de elementos em um conjunto, o que é descrito com a ajuda de uma função de pertinência valorada no intervalo unitário real [0, 1]. Conjuntos fuzzy generalizam conjuntos clássicos, visto que as funções indicadoras de conjuntos clássicos são casos especiais das funções de pertinência de conjuntos fuzzy, se estes só podem tomar os valores 0 ou 1.[9] Na teoria dos conjuntos fuzzy, conjuntos clássicos bivalentes são geralmente chamados conjuntos crisp. A teoria dos conjuntos fuzzy pode ser usada em uma ampla variedade de áreas em que a informação é incompleta ou imprecisa, como na bioinformática.[10]

A família de todos os subconjuntos de um conjunto dado é chamado de conjunto de partes (ou conjunto potência ) de , denotado por ou .[5]

Teoria do modelo interno

Um modelo interno da teoria dos conjuntos de Zermelo-Fraenkel (ZF) é uma classe transitiva que inclui todos os ordinais e satisfaz todos os axiomas de ZF. O exemplo canônico é o Universo construível L desenvolvido por Gödel. Uma das razões que torna o estudo de modelos internos interessante é que ele pode ser usado para provar resultados de consistência. Por exemplo, pode-se mostrar que, independentemente se um modelo V da ZF satisfaz a hipótese do continuum ou o axioma da escolha, o modelo interno L construído dentro do modelo original irá satisfazer tanto a hipótese do continuum generalizada quanto o axioma da escolha. Assim, a suposição de que ZF é consistente (tem qualquer modelo que seja) implica que ZF juntamente com estes dois princípios é consistente.

O estudo de modelos de interior é comum no estudo do determinismo e grandes cardinais, especialmente quando se considera axiomas que contradizem o axioma da escolha. Mesmo que um modelo fixo da teoria dos conjuntos satisfaz o axioma da escolha, é possível que um modelo interno falhe em satisfazer o axioma da escolha. Por exemplo, a existência de cardinais suficientemente grandes implica que há um modelo interno satisfazendo o axioma do determinismo (e, portanto, não satisfazendo o axioma da escolha).[11]

Grandes cardinais

Um grande cardinal é um número cardinal transfinito cujo caráter de "muito grande" está dado por uma propriedade extra, denominada propriedade de grande cardinal. Muitas destas propriedades são particularmente estudadas, incluindo cardinais inacessíveis, cardinais mensuráveis, cardinais compactos, entre outras. A existência de um cardinal com uma dessas propriedades não pode ser demonstrada ​​na teoria dos conjuntos de Zermelo-Fraenkel, ZF, se ZF é consistente.

Determinismo

Determinismo refere-se ao fato de que, sob os pressupostos adequados, certos dois jogadores são determinados desde o início no sentido de que um jogador deve ter uma estratégia vencedora. A existência dessas estratégias tem conseqüências importantes na teoria descritiva dos conjuntos, como a suposição de que uma classe mais ampla de jogos ser determinada muitas vezes implica que uma classe mais ampla de conjuntos possui uma propriedade topológica. O axioma do determinismo (AD) é um importante objeto de estudo, embora incompatível com o axioma da escolha, AD implica que todos os subconjuntos da reta real são bem comportados (em particular, mensuráveis ​​e com a propriedade de conjunto perfeito). AD pode ser usado para provar que os graus de Wadge têm uma estrutura alinhada.

Forçamento

Paul Cohen inventou o método de forçamento enquanto procura por um modelo de ZFC em que o axioma da escolha ou a hipótese do continuum falhe. Forçando a adição de conjuntos adicionais a algum determinado modelo da teoria dos conjuntos de modo a criar um modelo maior, com propriedades determinadas (isto é "forçadas") pelo modelo original e pela construção. Por exemplo, a construção de Cohen uniu subconjuntos adicionais dos números naturais sem mudar qualquer dos números cardinais do modelo original. Forçamento é também um dos dois métodos para provar consistência relativa por métodos finitístico, sendo o outro os modelos de valores Booleanos.

Invariantes cardinais

Invariante cardinal é uma propriedade da reta real medida por um número cardinal. Por exemplo, uma invariante bem estudado é a menor cardinalidade de uma coleção de conjuntos magros de reais cuja união é toda a reta real. Estes são invariantes no sentido de que quaisquer dois modelos da teoria dos conjuntos isomorfos deve dar o mesmo cardinal para cada invariante. Muitos invariantes cardinais foram estudados, e as relações entre eles são muitas vezes complexas e relacionadas com os axiomas da teoria dos conjuntos.

Topologia

Topologia estuda questões de topologia geral que são de teoria dos conjuntos em sua natureza ou que requerem métodos avançados da teoria dos conjuntos para sua solução. Muitos desses teoremas são independentes de ZFC, exigindo axiomas mais fortes para a sua prova. Um famoso problema é o problema do espaço de Moore, uma questão na topologia geral que foi objecto de intensa pesquisa. A resposta para este problema acabou por ser provada ser independente de ZFC.

Objeções à teoria dos conjuntos como fundamento para a matemática

Desde o início da teoria dos conjuntos, alguns matemáticos se opuseram a ela como um fundamento para a matemática, argumentando, por exemplo, que é apenas um jogo que inclui elementos de fantasia. A objeção mais comum à teoria dos conjuntos, um manifesto de Kronecker dos primeiros anos da teoria dos conjuntos, começou a partir da visão construtivista de que a matemática é vagamente relacionada à computação. Se este ponto de vista for admitido, então o tratamento de conjuntos infinitos, tanto na teoria ingênua dos conjuntos quanto na teoria axiomática dos conjuntos, introduz em matemática métodos e objetos que não são computáveis. Ludwig Wittgenstein questionou a forma como a teoria dos conjuntos de Zermelo-Fraenkel manipulava infinitos. As visões de Wittgenstein sobre os fundamentos da matemática foram mais tarde criticadas por Georg Kreisel e Paul Bernays, e minuciosamente investigadas por Crispin Wright, entre outros.

Teóricos das categorias propuseram a teoria de topos como uma alternativa à tradicional teoria axiomática dos conjuntos. A teoria de topos pode interpretar várias alternativas para aquela teoria, tais como o construtivismo, a teoria dos conjuntos finitos, e a teoria dos conjuntos computáveis.[carece de fontes?]

Ver também

Notas

  1. Em seu artigo de 1925, John von Neumann observou que "a teoria dos conjuntos na sua versão primeira, "ingênua", devida a Cantor, levou a contradições. Essas são as bem conhecidas antinomias do conjunto de todos os conjuntos que não contêm a si próprios (Russell), do conjunto de todos os números ordinais transfinitos (Burali-Forti), e o conjunto de todos os números reais finitamente definíveis (Richard)." Ele vai adiante até observar que duas "tendências" estavam tentando "reabilitar" a teoria dos conjuntos. Sobre o primeiro esforço, exemplificado por Bertrand Russell, Julius König, Hermann Weyl e L. E. J. Brouwer, von Neumann disse que "o efeito geral de suas atividadas. . . devastador". Com relação ao método axiomático empregado pelo segundo grupo composto de Ernst Zermelo, Abraham Fraenkel e Arthur Moritz Schoenflies, von Neumann demonstrou preocupação de que "vemos apenas que os modos conhecidos de inferência que levam a antinomias falham, mas quem sabe onde não há outras?" e ele assumiu a tarefa de, "no espírito do segundo grupo, produzir, por meio de um número finito de operações puramente formais . . . todos os conjuntos que desejamos ver formados" mas não permitir as antinomias. (Todas as citações de von Neumann 1925 reimpresso em van Heijenoort, Jean (1967, third printing 1976), "From Frege to Gödel: A Source Book in Mathematical Logic, 1979-1931", Harvard University Press, Cambridge MA, ISBN 0-674-32449-8 (pbk). Uma sinopse da história, escrita por van Heijenoort, pode ser encontrada nos comentários que precedem o artigo de von Neumann de 1925.

Referências

  1. G. Cantor, Über eine Eigenschaft des Inbegriffes aller reellen algebraischen Zahlen, Crelles Journal f. Mathematik, 77 (1874) 258–262.
  2. Philip Johnson, 1972, A History of Set Theory, Prindle, Weber & Schmidt ISBN 0871501546
  3. Bernard Bolzano, Paradoxien des Unendlichen, 1920, Felix Meiner, Leipzip.
  4. Georg Cantor, 1932, Gesammelte Abhandlungen mathematischen und philosophischen Inhalts, Springer, Berlin.
  5. a b https://www.scientificamerican.com/article/a-deep-math-dive-into-why-some-infinities-are-bigger-than-others/
  6. Michael Winter (2007). Goguen categories: a categorical approach to L-fuzzy relations. [S.l.]: Springer. p. ix. ISBN 978-1-4020-6163-9 
  7. L. A. Zadeh (1965) "Fuzzy sets" Arquivado em 27 de novembro de 2007, no Wayback Machine.. Information and Control 8 (3) 338–353.
  8. Klaua, D. (1965) Über einen Ansatz zur mehrwertigen Mengenlehre. Monatsb. Deutsch. Akad. Wiss. Berlin 7, 859–876. Uma profunda análise recente deste trabalho foi feita em Gottwald, Siegfried (16 de setembro de 2010). «An early approach toward graded identity and graded membership in set theory». Fuzzy Sets and Systems. 161 (18): 2369-2379. doi:10.1016/j.fss.2009.12.005 
  9. D. Dubois and H. Prade (1988) Fuzzy Sets and Systems. Academic Press, New York.
  10. Lily R. Liang, Shiyong Lu, Xuena Wang, Yi Lu, Vinay Mandal, Dorrelyn Patacsil, and Deepak Kumar, "FM-test: A Fuzzy-Set-Theory-Based Approach to Differential Gene Expression Data Analysis", BMC Bioinformatics, 7 (Suppl 4): S7. 2006.
  11. Jech, Thomas (2003), Set Theory: Third Millennium Edition, ISBN 978-3-540-44085-7, Springer Monographs in Mathematics, Berlin, New York: Springer-Verlag , p. 642.

Leituras adicionais

Ligações externas

Wikilivros
Wikilivros
O Wikilivros tem um livro chamado Teoria dos conjuntos
  • Foreman, M., Akihiro Kanamori, eds. Handbook of Set Theory. 3 vols., 2010. Cada capítulo levanta algum aspecto da pesquisa contemporânea em teoria dos conjuntos. Não cobre a teoria elementar dos conjuntos estabelecida, para tal veja Devlin (1993).

Read other articles:

Radio station in Vienna, West VirginiaWDMXVienna, West VirginiaBroadcast areaParkersburg, West VirginiaMarietta, OhioFrequency100.1 MHzBrandingMix 100ProgrammingFormatClassic hitsAffiliationsPremiere NetworksWest Virginia MetroNewsOwnershipOwneriHeartMedia, Inc.(iHM Licenses, LLC)Sister stationsWLTP, WNUS, WRVBHistoryFirst air date1989Former call signsWBNN (1987-1989)Call sign meaningWD MiXTechnical informationFacility ID4756ClassAERP1,650 wattsHAAT134 meters (440 ft)Transmitter coordina...

 

アメリカ合衆国の行政機関国務省United States Department of State国務省章国務省旗組織の概要設立年月日1789年7月27日 (234年前) (1789-07-27)改称:1789年9月15日継承前組織Department of Foreign Affairs種類行政部管轄アメリカ合衆国連邦政府本部所在地ハリー・S・トルーマン・ビルディング米国ワシントンD.C.北西通り2201C北緯38度53分39秒 西経77度2分54秒 / 北緯38.89417度 西...

 

Dieser Artikel oder nachfolgende Abschnitt ist nicht hinreichend mit Belegen (beispielsweise Einzelnachweisen) ausgestattet. Angaben ohne ausreichenden Beleg könnten demnächst entfernt werden. Bitte hilf Wikipedia, indem du die Angaben recherchierst und gute Belege einfügst. Belagerung von Verdun Teil von: Erster Koalitionskrieg J.W. v. Goethe: Festung Verdun Datum 29. August 1792 Ort Verdun, Frankreich Ausgang Sieg Preußens und Alliierte Konfliktparteien Frankreich 1804 Frankreich P...

Calle de Alenza España Cruces calle de Ríos Rosas, calle de Cristóbal Bordiú, calle de Maudes, calle de Raimundo Fernández Villaverde, calle del Marqués del Vasto, calle de Don Álvaro de Bazán, calle de María de Guzmán y calle de Bravo MurilloUbicación 40°26′39″N 3°42′02″O / 40.444151, -3.700573[editar datos en Wikidata] La calle de Alenza es una vía urbana de Madrid, situada en el barrio de Ríos Rosas del distrito de Chamberí. Orientada en se...

 

Mapa del mundo que muestra los países por la tasa de fertilidad. Periodo 2005-2010.      7-8 hijos      6-7 hijos      5-6 hijos      4-5 hijos      3-4 hijos      2-3 hijos      1-2 hijos      0-1 hijos El control poblacional o control de la población es la práctica de reducir, mantener o inc...

 

Massacre de Iguala Milhares protestam em frente ao Palácio Nacional no Zócalo, no centro da Cidade do México, por conta do sequestro dos 43 estudantes em Iguala. Local do crime Iguala México Data 26 de setembro de 2014 Tipo de crime Assassinato em massa Vítimas 43 sequestrados9 mortos Réu(s) José Luis Abarca Velázquez e María de los Ángeles Pineda Villa (prováveis mandantes) Parte de serie sobre a Violência contra homens Problemas Violência domestica Mutilação sexual Circu...

CagayanUseState flag Proportion1:2AdoptedMarch 11, 1970DesignThree horizontal stripes of blue (top), gold (middle) and green (bottom). The coat-of-arms of Cagayan, surrounded by a ring of 29 stars is placed off-center, toward the hoist. The flag of Cagayan is the provincial flag of Cagayan, Philippines. It is a horizontal triband of blue, gold and green, charged with the provincial coat-of-arms ringed by 29 white, five-pointed stars. It was adopted on March 11, 1970 by the virtue of Provincia...

 

 Nota: Se procura pelo grupo de personagens da DC Comics, veja Aves de Rapina (DC Comics). Este artigo ou secção contém uma lista de referências no fim do texto, mas as suas fontes não são claras porque não são citadas no corpo do artigo, o que compromete a confiabilidade das informações. Ajude a melhorar este artigo inserindo citações no corpo do artigo. (Novembro de 2013) Ave de rapina Exemplo de rapinante (harpia) Classificação científica Domínio: Eukaryota Super-reino...

 

Japanese manga series Dungeon PeopleFirst tankōbon volume coverダンジョンの中のひと(Danjon no Naka no Hito)GenreFantasy[1] MangaWritten bySui Futami [ja]Published byFutabashaEnglish publisherNA: Seven Seas EntertainmentImprintAction ComicsMagazineWeb Comic ActionDemographicSeinenOriginal runJune 19, 2020 – presentVolumes4 Anime television series Dungeon People (Japanese: ダンジョンの中のひと, Hepburn: Danjon no Naka no Hito) is a Japanese ...

1922 film The Man Who Married His Own WifeLobby cardDirected byStuart PatonScreenplay byGeorge HivelyBased onThe Man Who Married His Own Wifeby John Fleming WilsonMary Ashe MillerStarringFrank MayoSylvia BreamerMarie CrispHoward CramptonFrancis McDonaldJoseph W. GirardCinematographyArthur ReevesProductioncompanyUniversal Film Manufacturing CompanyDistributed byUniversal Film Manufacturing CompanyRelease date May 1, 1922 (1922-05-01) Running time50 minutesCountryUnited StatesLan...

 

Town and municipality in Southern and Eastern Serbia, SerbiaDoljevac Дољевац (Serbian)Town and municipality Coat of armsLocation of the municipality of Doljevac within SerbiaCoordinates: 43°12′N 21°50′E / 43.200°N 21.833°E / 43.200; 21.833Country SerbiaRegionSouthern and Eastern SerbiaDistrictNišavaSettlements16Government • MayorGoran Ljubić (SNS)Area[1] • Town3.17 km2 (1.22 sq mi) • ...

 

Maria KirilenkoKebangsaan RusiaTempat tinggalMoscow, RussiaTinggi173 m (567 ft 7 in)Berat57,6 kgMemulai pro2001PensiunAktifTipe pemainKananTotal hadiah$6,003,340TunggalRekor (M–K)199–133Gelar5 (3 gelar ITF)Peringkat tertinggiNo. 12 (27 Agustus 2012)Peringkat saat iniNo. 13 (26 Maret 2013)Hasil terbaik di Grand Slam (tunggal)Australia Terbuka4r (2008)Prancis Terbuka3r (2006)Wimbledon2r (2005)AS Terbuka3r (2003, 2006, 2007)GandaRekor (M–K)105–84Gelar5 WTAPeringk...

Reservoir in near Brookeville, MarylandTriadelphia ReservoirTriadelphia ReservoirShow map of MarylandTriadelphia ReservoirShow map of the United StatesLocationHoward / Montgomery counties, near Brookeville, MarylandCoordinates39°12′27″N 77°00′48″W / 39.207517°N 77.013302°W / 39.207517; -77.013302TypereservoirPrimary inflowsPatuxent RiverPrimary outflowsPatuxent RiverCatchment area77.3 sq mi (200 km2)Basin countriesUnited StatesSurface ar...

 

Société des chemins de fer de Mandchourie du Sud Création 1906 Disparition 1945 Prédécesseur Field Railroad Proposal Department (d) Successeur China Changchun Railway Company (d) Forme juridique Special company (d) Sigle 満鉄 Siège social Dalian Chine Filiales Département de recherche de Mantetsu (d)East Asiatic Economic Investigation Bureau (d)Dairen Kisen Kaisha (d)Nippon Seiro (d)Dalian Tram (d)Aciéries Shōwa Écartement des rails Écartement standard modifier  Carte p...

 

Győri ETO FCCalcio Győr Segni distintivi Uniformi di gara Casa Trasferta Colori sociali Verde, bianco Dati societari Città Győr Nazione  Ungheria Confederazione UEFA Federazione MLSZ Campionato Nemzeti Bajnokság II Fondazione 1904 Rifondazione2015 Allenatore Zoltan Nemeth Stadio ETO Park, Győr(16.000 posti) Sito web www.etofc.hu Palmarès Titoli nazionali 4 Campionati ungheresi2 NBII1 NBIII Trofei nazionali 4 Coppe d'Ungheria1 Supercoppa d'Ungheria Si invita a seguire il modello di...

County in Alabama, United States County in AlabamaWashington CountyCountyThe Washington County Courthouse in September 2007 FlagLocation within the U.S. state of AlabamaAlabama's location within the U.S.Coordinates: 31°24′33″N 88°12′41″W / 31.4092°N 88.2114°W / 31.4092; -88.2114Country United StatesState AlabamaFoundedJune 4, 1801Named forGeorge WashingtonSeatChatomLargest townChatomArea • Total1,089 sq mi (2,820 km2)...

 

Performances of William Shakespeare's plays Sir John Gilbert's 1849 painting: The Plays of William Shakespeare at 420 scenes and characters from several of William Shakespeare's plays. Thousands of performances of William Shakespeare's plays have been staged since the end of the 16th century. While Shakespeare was alive, many of his greatest plays were performed by the Lord Chamberlain's Men and King's Men acting companies at the Globe and Blackfriars Theatres.[1][2] Among the...

 

Species of legume Womel Scientific classification Kingdom: Plantae Clade: Tracheophytes Clade: Angiosperms Clade: Eudicots Clade: Rosids Order: Fabales Family: Fabaceae Subfamily: Caesalpinioideae Clade: Mimosoid clade Genus: Acacia Species: A. maranoensis Binomial name Acacia maranoensisPedley Occurrence data from AVH Acacia maranoensis, commonly known as womel,[1] is a shrub of the genus Acacia and the subgenus Plurinerves that is endemic to an area in north eastern Australia. ...

I UAlbum mini karya IUDirilis14 Desember 2011 (2011-12-14)Direkam2008-11GenreK-pop, dance-popDurasi24:46BahasaKoreaLabelEast WorldKronologi IU Last Fantasy (2011)Last Fantasy2011 I U(2011) Can You Hear Me? (2013)Can You Hear Me?2013 I U (ditulis sebagai I□U) adalah album mini Jepang pertama karya penyanyi-penulis lagu dan pemeran asal Korea Selatan IU, yang dirilis pada 14 Desember 2011. Album tersebut adalah perilisan pertama IU di pasar domestik Jepang, dan merupakan kompilasi la...

 

Jeremy Wade Jeremy Wade en 2011Información personalNombre de nacimiento Jeremy John WadeNacimiento 23 de marzo de 1956 (68 años)[1]​ Ipswich, Condado de Suffolk, Inglaterra, Reino UnidoNacionalidad BritánicaReligión AnglicanismoLengua materna Inglés Características físicasAltura 1, 83 mPeso 79 kgFamiliaFamiliares Martin Wade (hermano)EducaciónEducado en Universidad de Bristol Universidad de KentInformación profesionalOcupación Biólogo, presentador de televisión y escrit...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!