^Huang, Xiang; Sillanpää, Mika; Gjessing, Egil T.; Peräniemi, Sirpa; Vogt, Rolf D. (2010-09-01). “Environmental impact of mining activities on the surface water quality in Tibet: Gyama valley”. The Science of the Total Environment408 (19): 4177–4184. Bibcode: 2010ScTEn.408.4177H. doi:10.1016/j.scitotenv.2010.05.015. ISSN1879-1026. PMID20542540.
^Tarras-Wahlberga, N.H.; Flachier, A.; Lanec, S.N.; Sangforsd, O. (2001). “Environmental impacts and metal exposure of aquatic ecosystems in rivers contaminated by small scale gold mining: the Puyango River basin, southern Ecuador”. The Science of the Total Environment278 (1–3): 239–261. Bibcode: 2001ScTEn.278..239T. doi:10.1016/s0048-9697(01)00655-6. PMID11669272.
^Cervantes-Ramírez, Laura T.; Ramírez-López, Mónica; Mussali-Galante, Patricia; Ortiz-Hernández, Ma. Laura; Sánchez-Salinas, Enrique; Tovar-Sánchez, Efraín (2018-05-18). “Heavy metal biomagnification and genotoxic damage in two trophic levels exposed to mine tailings: a network theory approach”. Revista Chilena de Historia Natural91 (1): 6. doi:10.1186/s40693-018-0076-7. ISSN0717-6317.
^ abPyatt, F. B.; Gilmore, G.; Grattan, J. P.; Hunt, C. O.; McLaren, S. (2000). “An Imperial Legacy? An Exploration of the Environmental Impact of Ancient Metal Mining and Smelting in Southern Jordan”. Journal of Archaeological Science27 (9): 771–778. doi:10.1006/jasc.1999.0580.
^ abcdefMummey, Daniel L.; Stahl, Peter D.; Buyer, Jeffrey S. (2002). “Soil microbiological properties 20 years after surface mine reclamation: spatial analysis of reclaimed and undisturbed sites”. Soil Biology and Biochemistry34 (11): 1717–1725. doi:10.1016/s0038-0717(02)00158-x.
^ abcdefgSteinhauser, Georg; Adlassnig, Wolfram; Lendl, Thomas; Peroutka, Marianne; Weidinger, Marieluise; Lichtscheidl, Irene K.; Bichler, Max (2009). “Metalloid Contaminated Microhabitats and their Biodiversity at a Former Antimony Mining Site in Schlaining, Austria”. Open Environmental Sciences3: 26–41. doi:10.2174/1876325100903010026.
^ abcdNiyogi, Dev K.; William M., Lewis Jr.; McKnight, Diane M. (2002). “Effects of Stress from Mine Drainage on Diversity, Biomass, and Function of Primary Producers in Mountain
Streams”. Ecosystems6 (5): 554–567. doi:10.1007/s10021-002-0182-9.
^Ek, A. S.; Renberg, I. (2001). “Heavy metal pollution and lake acidity changes caused by one thousand years of copper mining at Falun, central Sweden”. Journal of Paleolimnology26 (1): 89–107. doi:10.1023/A:1011112020621.
^RYAN, PADDY A. (1991). “Environmental effects of sediment on New Zealand streams: a review”. New Zealand Journal of Marine and Freshwater Research25 (2): 207–221. doi:10.1080/00288330.1991.9516472.
^Kimura, Sakurako; Bryan, Christopher G.; Hallberg, Kevin B.; Johnson, D. Barrie (2011). “Biodiversity and geochemistry of an extremely acidic, low-temperature subterranean environment sustained by chemolithotrophy”. Environmental Microbiology13 (8): 2092–2104. doi:10.1111/j.1462-2920.2011.02434.x. PMID21382147.
^ abcdSalonen, Veli-Pekka Salonen; Tuovinen, Nanna; Valpola, Samu (2006). “History of mine drainage impact on Lake Orija¨ rvi algal communities, SW Finland”. Journal of Paleolimnology35 (2): 289–303. Bibcode: 2006JPall..35..289S. doi:10.1007/s10933-005-0483-z.
^Michelutti, Neal; Laing, Tamsin E.; Smol, John P. (2001). “Diatom Assessment of Past Environmental Changes in Lakes Located Near the Noril'sk (Siberia) Smelters”. Water, Air, & Soil Pollution125 (1): 231–241. Bibcode: 2001WASP..125..231M. doi:10.1023/A:1005274007405.
^Gerhardt, A.; Janssens de Bisthoven, L.; Soares, A.M.V.M. (2004). “Macroinvertebrate response to acid mine drainage: community metrics and on-line behavioural toxicity bioassay”. Environmental Pollution130 (2): 263–274. doi:10.1016/j.envpol.2003.11.016. PMID15158039.
^ abMALMQVIST, BJOÈ RN; HOFFSTEN, PER-OLA (1999). “Influence of drainage from old mine deposits on benthic macroinvertebrate communities in central Swedish streams”. Water Research33 (10): 2415–2423. doi:10.1016/s0043-1354(98)00462-x.
^Wong, H.K.T; Gauthier, A.; Nriagu, J.O. (1999). “Dispersion and toxicity of metals from abandoned gold mine tailings at Goldenville, Nova Scotia, Canada”. Science of the Total Environment228 (1): 35–47. Bibcode: 1999ScTEn.228...35W. doi:10.1016/s0048-9697(99)00021-2.
^ abcdedel Pilar Ortega-Larrocea, Marıa; Xoconostle-Cazares, Beatriz; Maldonado-Mendoza, Ignacio E.; Carrillo-Gonzalez, Rogelio; Hernandez-Hernandez, Jani; Dıaz Garduno, Margarita; Lopez-Meyer, Melina; Gomez-Flores, Lydia et al. (2010). “Plant and fungal biodiversity from metal mine wastes under remediation at Zimapan, Hidalgo, Mexico”. Environmental Pollution158 (5): 1922–1931. doi:10.1016/j.envpol.2009.10.034. PMID19910092.
^Diehl, E; Sanhudo, C. E. D; DIEHL-FLEIG, Ed (2004). “Ground-dwelling ant fauna of sites with high levels of copper”. Brazilian Journal of Biology61 (1): 33–39. doi:10.1590/S1519-69842004000100005. PMID15195362.
^Rösner, T.; van Schalkwyk, A. (2000). “The environmental impact gold mine tailings footprints in the Johannesburg region, South Africa”. Bulletin of Engineering Geology and the Environment59 (2): 137–148. doi:10.1007/s100640000037.
^Hoostal, MJ; Bidart-Bouzat, MG; Bouzat, JL (2008). “Local adaptation of microbial communities to heavy metal stress in polluted sediments of Lake Erie”. FEMS Microbiology Ecology65 (1): 156–168. doi:10.1111/j.1574-6941.2008.00522.x. PMID18559016.
^ abSchwarzenbach, René P.; Egli, Thomas; Hofstetter, Thomas B.; von Gunten, Urs; Wehrli, Bernhard (2010-11-21). “Global Water Pollution and Human Health” (英語). Annual Review of Environment and Resources35 (1): 109–136. doi:10.1146/annurev-environ-100809-125342. ISSN1543-5938.