La storia dell'elettrochimica ha visto il susseguirsi di numerose tappe fondamentali nel corso della sua evoluzione, spesso correlate con lo sviluppo di diverse branche della chimica e della fisica: essa trae infatti origine dalla scoperta dei principi del magnetismo all'inizio del XVI e XVII secolo e prosegue fino alle teorie sulla conduttività e sul trasporto della carica elettrica.
Sebbene si possa parlare di elettrochimica nel senso scientifico del termine solo a partire dalla fine del XVIII secolo (in concomitanza con gli studi degli italianiLuigi Galvani e Alessandro Volta), si ritrovano alcune testimonianze di processi elettrochimici anche di molto antecedenti a questa data. Ad esempio negli scritti dello storico bizantinoZosimo (vissuto nel V secolo d.C.) viene descritto un metodo per ricoprire il ferro con uno strato di rame; tale metodo consiste nell'immergere il ferro in una soluzione di un sale di rame.[1]
Nel 1772 lo studioso Giovanni Battista Beccaria scoprì che facendo passare una scintilla (ad esempio ottenuta da una batteria di bottiglie di Leida) sull'ossido di zinco poteva essere prodotto zinco.[1]
La nascita dell'elettrochimica coincide con gli esperimenti di Luigi Galvani sull'elettricità animale, descritti nel suo saggio De Viribus Electricitatis in Motu Musculari Commentarius (1791).[2][3] Gli esperimenti di Galvani consistevano nel collegare a degli elettrodi i muscoli di una rana dissezionata. Nel suo saggio Galvani asserì che i tessuti animali siano impregnati da una "forza vitale", che egli chiamò "elettricità animale", la quale attiva il muscolo quando questo è posto a contatto con due metalli differenti. Egli credeva che tale forma di elettricità fosse differente da quella generata dai fulmini o prodotta artificialmente per strofinamento e paragonò i muscoli alle superfici elettrizzate di una bottiglia di Leida.[4] A tale spiegazione si contrappose quella di Alessandro Volta, il quale pensava che i muscoli si comportassero come un elettroscopio, per cui la causa reale della contrazione muscolare fosse dovuta a quella che lui definì "elettricità metallica", originata dalla differente natura dei metalli posti a contatto.[4] A partire da tali considerazioni, nel 1799 Alessandro Volta costruì la prima pila,[5] chiamata appunto "pila di Volta". Tale dispositivo era costituito da diversi elementi disposti "a pila" (da cui il nome), ciascuno formato a sua volta da un dischetto di rame e un dischetto di zinco separati da feltro o cartone imbevuto da una soluzione acquosa.
L'invenzione di Volta venne annunciata in una lettera rivolta a Joseph Banks, presidente della Royal Society di Londra, datata 20 marzo 1800, in cui lo stesso Volta ne diede anche la prima descrizione;[3] nel 1801 la pila di Volta venne quindi presentata all'Institut National des Sciences et Arts.[6]
La pila di Volta venne denominata inizialmente organo elettrico artificiale oppure apparato elettromotore; venne poi battezzata pila per via della sua struttura caratteristica.
Le prime applicazioni pratiche
La pila di Volta presentava un potenziale di cella molto basso, a causa del fatto che la soluzione acquosa interposta tra i dischetti di rame e zinco fuoriusciva facilmente, a causa del peso dei dischi metallici che schiacciavano le rotelle di feltro o cartone intrise di tale soluzione. Per tale motivo furono realizzate delle varianti della comune pila di Volta (o "pila a colonna") che potessero ovviare a tale problema; tali varianti erano:
la "pila a trogoli" (o "pila a cassetta"), nella quale gli elementi metallici erano costituiti da lastre di zinco e rame saldate a due a due, inserite all'interno di una cassetta di legno orizzontale, per cui si venivano a formare dei compartimenti (o "trogoli") in cui veniva versata la soluzione acquosa;[7] tale variante fu ideata da William Cruickshank nel 1802;[8][9]
la "pila a tazze" (o "pila a corona di tazze"), nella quale gli elementi metallici erano costituiti da singole lastre di zinco e di rame; ciascuna coppia di lastre era inserita all'interno di una "tazza" di vetro (da cui il nome);[10] tale variante era già presente nei primi disegni di Alessandro Volta;
la "pila di Wollaston", in cui il catodo di rame era ripiegato a forma di U e circondava l'anodo in zinco, disposto al centro; gli elettrodi erano immersi in una vaschetta contenente la soluzione elettrolitica;[11] tale configurazione fu ideata tra il 1813 e il 1815 da William Hyde Wollaston.[8]
Pila a colonna
Pila a tazze
Pila a trogoli
Pila di Wollaston
Nel 1800 Banks mostrò la lettera di Volta a Anthony Carlisle, il quale assieme a William Nicholson costruì la pila secondo lo schema di Volta; dopo avere costruito la pila, nel tentativo di misurare la carica posseduta dai piatti della pila, Carlisle e Nicholson versarono un po' di acqua sugli elettrodi e si accorsero che si aveva sviluppo di gas.[3]
Qualche mese dopo, i chimici inglesi William Nicholson e Johann Wilhelm Ritter ripeterono l'esperimento di Carlisle e Nicholson sull'elettrolisi, riuscendo a separare l'acqua in idrogeno e ossigeno.[12] Poco dopo Ritter mise a punto la prima apparecchiatura per lo svolgimento della galvanostegia, un processo che permette di ricoprire tramite deposizione elettrolitica un metallo con un sottile strato di un metallo di natura differente. Durante le sue esperienze sulla galvanostegia, Ritter scoprì inoltre che la quantità di metallo depositato dipende dalla distanza alla quale sono posti gli elettrodi.[8]
Nel 1803Giovanni Aldini, nipote di Galvani, svolse ulteriori esperimenti sul galvanismo utilizzando anche la pila di Volta durante i suoi esperimenti; in particolare suscitò scalpore un suo esperimento sul corpo umano di un certo George Forster, condannato a morte: infatti durante tale esperimento il corpo rispondeva all'applicazione degli elettrodi con bruschi movimenti dei muscoli, come se il corpo stesse rianimandosi.[8] Aldini concluse da tale esperimento che l'applicazione degli elettrodi aveva delle forti ripercussioni sui muscoli e sul sistema nervoso, ma non riusciva a rianimare il cuore.[8]
A partire dal 1807, sfruttando una cella elettrolitica collegata ad una pila di Volta costituita da 274 elementi,[14] Sir Humphry Davy isolò a partire dai composti che li contenevano il sodio (1807), il potassio (1807), lo stronzio (1807), il calcio (1808), il magnesio (1808) e il litio.[3][8][9][15][16] Da tali esperienze Davy dedusse che l'elettricità svolgeva delle modifiche chimiche alle sostanze e che tali sostanze dovevano essere costituite da specie chimiche aventi carica opposta.[3]
Successivamente (nel 1824) Humphry Davy scoprì la tecnica della protezione catodica, che proteggendo i metalli dalla corrosione permise l'adozione di scafi delle imbarcazioni in metallo.[17] In particolare, egli propose di installare dei blocchi di ferro alla copertura in rame di una nave. Ciò comportò la prevenzione dalla corrosione del rame, il ferro annullava le proprietà protettive degli ossidi di rame che si formano in seguito alla corrosione del rame immerso in acqua di mare, che impediscono la crescita di molluschi sullo scafo, che così necessitava di lunghe operazioni di pulitura in cantiere.
Intorno al 1820Robert Hare inventò il "deflagratore galvanico" o "calorimotore", un dispositivo simile ad una pila di Volta ma dotato di piatti molto larghi;[8] tale dispositivo era utilizzato per svolgere combustioni intense e in tempi rapidi;[18][19][20] una versione modificata del deflagratore galvanico di Hare venne utilizzata nel 1823 per volatilizzare e fondere il carbone;[8] inoltre nel 1831 fu verificato che se il deflagratore veniva immerso in un liquido ne provocava l'innalzamento di temperatura, fino a raggiungimento dell'ebollizione.[8]
Il deflagratore di Hare era costituito da 80 fogli di zinco (delle dimensioni di circa 15×23 cm) e altrettanti fogli di rame (delle dimensioni di circa 15×35 cm), piegati su se stessi; i fogli di rame avevano dimensioni maggiori, in quanto dovevano circondare completamente i fogli di zinco.[21] Gli 80 elementi in rame e zinco venivano immersi in altrettanti contenitori in vetro, contenenti una soluzione acquosa; nel momento dell'immersione aveva origine la scarica, con intensa produzione di energia termica e luminosa.[21]
Nel 1826 Kemp utilizzò per la prima volta un elettrodo costituito da un amalgama di zinco.[9]
Al 1836 risale l'invenzione della pila Daniell da parte di John Frederic Daniell;[25][26] grazie a tale pila venivano risolte definitivamente le difficoltà associate alla breve durata di esercizio della pila di Volta[3] (causate dallo sviluppo di idrogeno all'interno della pila).[26] La pila Daniell utilizzava elettrodi in rame e zinco come la pila di Volta, ma a differenza di questa tali elettrodi venivano immersi in due semicelle separate da un ponte salino, in modo da diminuire gli effetti della polarizzazione e lo sviluppo di idrogeno.[26]
Sempre nel 1838 si ebbe l'invenzione della pila di Grove da parte di William Robert Grove; la pila di Groove era costituita da un anodo di zinco immerso in una soluzione diluita di acido solforico e un catodo di platino immerso in una soluzione concentrata di acido nitrico;[3] a causa dell'elevato potenziale di cella (pari a 1,9 volt), tale pila fu preferita alla pila Daniell negli anni 1840-1860 per fornire energia ai telegrafi americani;[3] successivamente la pila di Grove venne abbandonata a causa della sua tossicità; tale pila infatti liberava fumi di diossido di azoto (NO2).[3] Nel 1839 Grove inventò inoltre la prima cella a combustibile,[28] invertendo il processo di elettrolisi dell'acqua, cioè producendo acqua ed energia elettrica a partire da idrogeno e ossigeno. Grove pubblicò i risultati della sua cella a combustibile nel febbraio del 1839 sulla rivista Philosophical Magazine and Journal of Science[29] e ne fornì un'illustrazione nel 1842, sulla stessa rivista.[30]
Al 1840 risale l'invenzione della pila di Smee,[9] che ricalca la configurazione ad U della pila di Wollaston, ma a differenza di questa l'elettrodo esterno (piegato ad U) era costituito da argento platinato, mentre lo zinco costituiva l'elettrodo interno.[11]
Nel 1841Robert Wilhelm Eberhard Bunsen inventò la pila di Bunsen a partire dalla pila di Grove, dalla quale si differenziava per l'utilizzo di un catodo a carbone al posto del costoso catodo di platino della pila di Grove;[3][26] grazie a tale modifica, che ne abbatteva i costi, la pila di Bunsen poteva essere prodotta su larga scala.[3]
Nel 1842 Johann Christian Poggendorff ideò una pila in cui gli elettrodi, costituiti da zinco e carbone, erano immersi in una soluzione acquosa contenente ossido di cromo(VI) (CrO3) e acido solforico; tale pila fu migliorata nel 1856 da Grenet (per cui venne chiamata "pila Poggendorff-Grenet") e fu utilizzata spesso in laboratorio, in quanto aveva il vantaggio di non rilasciare sostanze gassose.[31][32][33]
Nel 1853Johann Wilhelm Hittorf definì il numero di trasporto, partendo dalla constatazione che gli ioni all'interno di un elettrolita si muovono a velocità differenti.[3][26] Tale constatazione permise ad Hittorf nel 1869 di elaborare le leggi che regolano il fenomeno della migrazione degli ioni.[35]
Nel 1865 da James Elkington brevettò il processo industriale di raffinazione del rame;[37] cinque anni dopo (nel 1870) venne inaugurato il primo impianto di raffinazione elettrolitica del rame, a Pembrey (nel Galles).[37]
Nel 1866Georges Leclanché inventò e brevettò quella che somigliava ad una "pila a secco",[38] detta pila Leclanché (in cui era presente una soluzione elettrolitica ancora acquosa, per cui non poteva definirsi propriamente "pila a secco"); la pila Leclanché era costituita da un catodo di carbone circondato da una pasta di biossido di manganese e un anodo di zinco; tali elettrodi erano immersi in una soluzione a base di cloruro di ammonio.[3]
Circa venti anni dopo, nel 1887, Carl Gassner brevettò una pila in cui era presente una pasta elettrolita e non più una soluzione acquosa, per cui poteva definirsi a tutti gli effetti "pila a secco".[39] Sebbene la pila di Leclanché e la pila di Gassner siano erroneamente citate da alcuni come le prime pile a secco, in realtà già nel 1812Giuseppe Zamboni realizzò una pila a secco a biossido di manganese,[40] prendendo a sua volta spunto da Deluc, che costruì la prima pila a secco nel 1809.[9]
Nel 1889Ludwig Mond e Charles Langer coniano il termine "cella a combustibile"[26] e realizzano una cella a combustibile con elettrodi di platino.[3][45] La necessità di utilizzare elettrodi in platino rendeva comunque le pile a combustibile ancora antieconomiche.[45]
Nel 1893 venne ideata la pila Weston da Edward Weston.[3] La pila Weston era una pila a umido di riferimento, utilizzata in laboratorio per la calibrazioni di strumenti di misura quali i voltmetri e i potenziometri ed è stata utilizzata come standard internazionale di differenza di potenziale dal 1911 al 1990. La pila Weston era preferita alla pila di Clark in quanto era meno sensibile alla variazione di temperatura e inoltre aveva il vantaggio di presentare un potenziale di cella prossimo a 1 volt (per l'esattezza 1,0183 V).[3] Nonostante tali vantaggi, a partire dal 1911 è stata bandita a causa del suo elevato contenuto di mercurio e cadmio, entrambi tossici.
Nel 1898Fritz Haber osservò che i prodotti di un processo elettrochimico possono variare modificando la tensione impartita ai morsetti della cella. Inoltre Haber, assieme a Cremer, mise a punto il primo elettrodo a vetro.[3]
Nel 1900Friedrich Kohlrausch formulò la legge dell'indipendente mobilità degli ioni.[48] Kohlrausch fu inoltre il primo scienziato a usare la corrente alternata per lo svolgimento degli esperimenti sulle celle elettrochimiche; grazie all'utilizzo della corrente alternata riuscì a ottenere misure più precise durante i suoi esperimenti, in quanto la corrente alternata evitava la formazione sulla superficie degli elettrodi di film costituiti da prodotti di decomposizione.[3]
Nel 1905 il chimico tedesco Julius Tafel pubblicò un articolo sulla rivista Zeitschrift fur physikalische Chemie, dove descrisse la relazione la velocità di una reazione elettrochimica alla sovratensione, valida nel caso di sovratensioni elevate e conosciuta come "legge di Tafel".[50][51] A Tafel si edve inoltre l'invenzione del voltametro a idrogeno, utilizzato per misurare la velocità delle reazioni elettrochimiche.[3]
Al 1911 risalgono gli studi di Frederick Donnan sull'equilibrio delle celle galvaniche in presenza di una membrana semipermeabile che separi le due semicelle;[52] egli evidenziò che tale membrana, ostacolando il passaggio di alcune specie ioniche, riesce a garantire l'elettroneutralità della soluzione elettrolitica.[52]
Nel 1914 venne ideata la pila zinco-aria dal francese Charles Féry.[53] Nelle pile zinco-aria si ha l'ossidazione dello zinco all'anodo e la riduzione dell'ossigeno al catodo; tali pile garantiscono un potenziale di cella teorico di 1,65 V.
Agli studi di Wagner e Traud seguì nel 1945 l'introduzione dei "diagrammi potenziale-pH" (detti "diagrammi di Pourbaix") da parte del chimico Marcel Pourbaix e dei "diagrammi di Evans"[62] da parte di Ulick Richardson Evans. I diagrammi di Pourbaix sono utili a definire le condizioni di temperatura e pH per le quali ha luogo la corrosione,[63] mentre dai diagrammi di Evans si possono ricavare informazioni riguardanti la velocità di corrosione e l'insorgenza di condizioni di passivazione.[64]
Nel 1942 venne ideata la batteria a mercurio da Samuel Ruben (fondatore della Duracell, assieme a Philip Rogers Mallory);[65] la commercializzazione di tale pila ebbe inizio nel 1957, sotto il nome di "pila Ruben-Mallory". A causa della tossicità del mercurio, a partire dal 1990 ne fu vietata la produzione. A Samuel Ruben si deve inoltre l'ideazione della pila all'ossido di argento, nel 1950.
Nel 1949 venne fondato il Comiteé International de Cinetique et de Thermodynamique Electrochimique (CITCE) ad opera di diversi scienziati europei, tra cui: Marcel Pourbaix, Pierre Van Rysselberghe, G. Valensi, N. Ibl, T.P. Hoar e J. O'M. Bockris.[66][67] Più tardi (nel 1971) il nome della società venne modificato nell'attuale International Society of Electrochemistry (ISE).[66]
Nella prima metà degli anni sessanta la General Electric produsse un sistema che aveva il fine di generare energia elettrica basato sulle celle a combustibile, destinato alle navicelle spaziali Gemini ed Apollo della NASA. Tale sistema, messo a punto da Willard Thomas Grubb e Leonard Niedrach, adottava pile a combustibile con membrana a scambio protonico (PEMFC)[55] e venne installato nel 1962 su una navicella Gemini:[68] era la prima volta che le celle a combustibile venivano utilizzate su un veicolo spaziale. Tale sistema, oltre a produrre energia elettrica, aveva lo scopo di produrre acqua potabile per gli astronauti.[55] Nel 1968 le celle a combustibile alcaline vennero utilizzate nell'ambito dell'Apollo 7,[68] e più tardi (nel 1981) furono utilizzate anche sullo Space Shuttle.[68]
^Evoluzione della pila - Pila Daniell, su museo.liceofoscarini.it. URL consultato il 4 settembre 2011 (archiviato dall'url originale il 14 novembre 2010).
^ George Wand, Fuel Cells History, part 1 (PDF), su fuelcelltoday.com, Johnson Matthey plc, p. 14. URL consultato il 6 ottobre 2008 (archiviato dall'url originale il 29 ottobre 2008).
^Grove, William Robert "On Voltaic Series and the Combination of Gases by Platinum", Philosophical Magazine and Journal of Science vol. XIV (1839), pp 127-130.
^Grove, William Robert "On a Gaseous Voltaic Battery", Philosophical Magazine and Journal of Science vol. XXI (1842), pp 417-420.
^abc(EN) [ Copia archiviata (PDF), su trs-new.jpl.nasa.gov. URL consultato il 20 settembre 2011 (archiviato dall'url originale il 27 giugno 2011). Gerald Halpert Harvey Frank e Subbarao Surampudi, Batteries and fuel cells in space.
(EN) William B. Frank, Warren E. Haupin, Ullmann's Encyclopedia of Industrial Chemistry, "Aluminium", 7ª ed., Wiley-VCH, 2000, DOI:10.1002/14356007.a01_459.
(EN) Carl H. Hamann, Andrew Hamnett, Wolf Vielstich, Electrochemistry, 2ª ed., Wiley-VCH, 2007, ISBN3-527-31069-X. URL consultato il 4 settembre 2011 (archiviato dall'url originale il 7 marzo 2016).
Solomon Zaromb, The use and behaviour of aluminum anodes in alkaline primary batteries, in Journal of Electrochemistry Society, vol. 109, 1962, pp. 1125-1130.