La plupart des cytochromes P450 ont besoin, pour fonctionner, d'un autre cofacteur, en l'occurrence une « protéine partenaire » qui leur fournit un ou plusieurs électrons réduisant leur atome de fer, ainsi que d'une molécule de dioxygène. Ils sont classés en plusieurs systèmes en fonction de la nature des protéines impliquées dans le transfert d'électrons[4] :
le système P450 microsomial, dans lequel les électrons sont transférés depuis une molécule de NADPH grâce à une cytochrome P450 réductase (CPR, POR ou CYPOR). Le cytochrome b5 (CYB5) peut également contribuer à l'activité réductrice de ce système après avoir été lui-même réduit par la cytochrome b5 réductase (CYB5R) ;
le système CYB5R/CYB5/P450, dans lequel les deux électrons requis par le cytochrome P450 proviennent de la cytochrome b5 réductase et du cytochrome b5 ;
le système FMN/Fd/P450, trouvé à l'origine chez Rhodococcus, et dans lequel une réductase à FMN est fusionnée au cytochrome P450 ;
Les cytochromes P450 des vertébrés sont principalement exprimés dans le foie. Les composés qu'ils oxydent deviennent plus polaires et peuvent être ainsi excrétés, en particulier par les reins, dans les urines.
Typologies
Plusieurs cytochromes P450 ont une importance particulière en médecine et en pharmacologie.
Par ailleurs, les cytochromes participent activement à la biotransformation de nombreuses molécules exogènes (dites « xénobiotiques »), contribuant ainsi à la détoxication de l'organisme, mais aussi à celle de nombreux médicaments dans l'organisme. Plus les cytochromes P-450 sont actifs, plus les médicaments sont biotransformés rapidement. La biotransformation abolit ou réduit généralement l'activité des médicaments dont les métabolites sont pharmacologiquement inactifs. On peut aussi tirer parti des cytochromes pour transformer un médicament inactif (promédicament) en métabolite actif (comme pour la codéine avec le CYP2D6).
Il existe des centaines de cytochromes différents, répartis dans quatre familles (CYP1, CYP2, CYP3 et CYP4). On distingue également des sous-familles (CYP1A, CYP2D, etc.) et des isoenzymes distinctes (CYP3A4, CYP2D6, etc.). Chaque type de cytochrome P450 a une fonction différente. Voici quelques exemples :
↑(en) Michael R. Wester, Jason K. Yano, Guillaume A. Schoch, Christine Yang, Keith J. Griffin, C. David Stout et Eric F. Johnson, « The Structure of Human Cytochrome P450 2C9 Complexed with Flurbiprofen at 2.0-Å Resolution », Journal of Biological Chemistry, vol. 279, no 34, , p. 35630-35637 (PMID15181000, DOI10.1074/jbc.M405427200, lire en ligne)
↑(en) David C. Lamb, Li Lei, Andrew G. S. Warrilow, Galina I. Lepesheva, Jonathan G. L. Mullins, Michael R. Waterman et Steven L. Kelly, « The First Virally Encoded Cytochrome P450 », Journal of Virology, vol. 83, no 16, , p. 8266-8269 (PMID19515774, PMCID2715754, DOI10.1128/JVI.00289-09, lire en ligne)
↑(en) P. B. Danielson, « The Cytochrome P450 Superfamily: Biochemistry, Evolution and Drug Metabolism in Humans », Current Drug Metabolism, vol. 3, no 6, , p. 561-597 (PMID12369887, DOI10.2174/1389200023337054, lire en ligne)
↑(en) Israel Hanukoglu, « Electron Transfer Proteins of Cytochrome P450 Systems », Advances in Molecular and Cell Biology, vol. 14, , p. 29-56 (DOI10.1016/S1569-2558(08)60339-2, lire en ligne)
↑Guengerich FP, Kim DH, Iwasaki M (1991).Role of human cytochrome P-450 IIEI in the oxidation of many low molecular weight cancer suspects. Chem. Res. Toxicol., 1991, 4 (2), p. 168–179