PROFILBARU.COM
Privacy Policy
My Blog
Profil Sekolah [Wilayah]
Luar Negeri
Prov. Aceh
Prov. Bali
Prov. Banten
Prov. Bengkulu
Prov. D.I. Yogyakarta
Prov. D.K.I. Jakarta
Prov. Gorontalo
Prov. Jambi
Prov. Jawa Barat
Prov. Jawa Tengah
Prov. Jawa Timur
Prov. Kalimantan Barat
Prov. Kalimantan Selatan
Prov. Kalimantan Tengah
Prov. Kalimantan Timur
Prov. Kalimantan Utara
Prov. Kepulauan Bangka Belitung
Prov. Kepulauan Riau
Prov. Lampung
Prov. Maluku
Prov. Maluku Utara
Prov. Nusa Tenggara Barat
Prov. Nusa Tenggara Timur
Prov. Papua
Prov. Papua Barat
Prov. Riau
Prov. Sulawesi Barat
Prov. Sulawesi Selatan
Prov. Sulawesi Tengah
Prov. Sulawesi Tenggara
Prov. Sulawesi Utara
Prov. Sumatera Barat
Prov. Sumatera Selatan
Prov. Sumatera Utara
Profil Sekolah [Tingkat]
KB
PKBM
SD
SDLB
Semua Bentuk
SKB
SLB
SMA
SMK
SMLB
SMP
SMPLB
SPK SD
SPK SMA
SPK SMP
SPS
TK
TKLB
TPA
Profil Kampus [Wilayah]
Prov. Aceh
Prov. Bali
Prov. Bangka Belitung
Prov. Banten
Prov. Bengkulu
Prov. D.I. Yogyakarta
Prov. D.K.I. Jakarta
Prov. Gorontalo
Prov. Jambi
Prov. Jawa Barat
Prov. Jawa Tengah
Prov. Jawa Timur
Prov. Kalimantan Barat
Prov. Kalimantan Selatan
Prov. Kalimantan Tengah
Prov. Kalimantan Timur
Prov. Kalimantan Utara
Prov. Kepulauan Riau
Prov. Lampung
Prov. Maluku
Prov. Maluku Utara
Prov. Nusa Tenggara Barat
Prov. Nusa Tenggara Timur
Prov. Papua
Prov. Papua Barat
Prov. Riau
Prov. Sulawesi Barat
Prov. Sulawesi Selatan
Prov. Sulawesi Tengah
Prov. Sulawesi Tenggara
Prov. Sulawesi Utara
Prov. Sumatera Barat
Prov. Sumatera Selatan
Prov. Sumatera Utara
Artikel Digital
Literasi Digital
Jurnal Publikasi
Kumpulan Artikel
Profil Sekolah - Kampus
Dokumen 123
Informasi Kampus
Keyword
Keyword 2
Keyword 3
Keyword 4
kunjungan
Share to:
Timeline of mathematical logic
A
timeline
of
mathematical logic
; see also
history of logic
.
19th century
1847 –
George Boole
proposes symbolic logic in
The Mathematical Analysis of Logic
, defining what is now called
Boolean algebra
.
1854 – George Boole perfects his ideas, with the publication of
An Investigation of the Laws of Thought
.
1874 –
Georg Cantor
proves that the set of all
real numbers
is
uncountably infinite
but the set of all real
algebraic numbers
is
countably infinite
.
His proof
does not use his famous
diagonal argument
, which he published in 1891.
1895 – Georg Cantor publishes a book about set theory containing the arithmetic of infinite
cardinal numbers
and the
continuum hypothesis
.
1899 – Georg Cantor discovers a contradiction in his set theory.
20th century
1904 -
Edward Vermilye Huntington
develops the
back-and-forth method
to prove Cantor's result that countable dense linear orders (without endpoints) are isomorphic.
1908 –
Ernst Zermelo
axiomatizes
set theory
, thus avoiding Cantor's contradictions.
1915 -
Leopold Löwenheim
publishes a proof of the (downward)
Löwenheim-Skolem theorem
, implicitly using the
axiom of choice
.
1918 -
C. I. Lewis
writes
A Survey of Symbolic Logic
, introducing the modal logic system later called S3.
1920 -
Thoralf Skolem
proves the (downward)
Löwenheim-Skolem theorem
using the
axiom of choice
explicitly.
1922 -
Thoralf Skolem
proves a weaker version of the
Löwenheim-Skolem theorem
without the axiom of choice.
1929 -
Mojzesj Presburger
introduces
Presburger arithmetic
and proving its decidability and completeness.
1928 -
Hilbert
and
Wilhelm Ackermann
propose the
Entscheidungsproblem
: to determine, for a statement of
first-order logic
whether it is universally valid (in all models).
1930 -
Kurt Gödel
proves the
completeness
and
countable compactness
of first-order logic for countable languages.
1930 -
Oskar Becker
introduces the modal logic systems now called S4 and S5 as variations of Lewis's system.
1930 -
Arend Heyting
develops an
intuitionistic propositional calculus
.
1931 –
Kurt Gödel
proves
his incompleteness theorem
which shows that every axiomatic system for mathematics is either incomplete or inconsistent.
1932 -
C. I. Lewis
and
C. H. Langford
's
Symbolic Logic
contains descriptions of the
modal logic
systems S1-5.
1933 - Kurt Gödel develops two interpretations of intuitionistic logic in terms of a
provability logic
, which would become the standard axiomatization of S4.
1934 -
Thoralf Skolem
constructs a
non-standard model of arithmetic
.
1936 -
Alonzo Church
develops the
lambda calculus
.
Alan Turing
introduces the
Turing machine
model proves the existence of
universal Turing machines
, and uses these results to settle the
Entscheidungsproblem
by proving it equivalent to (what is now called) the
halting problem
.
1936 -
Anatoly Maltsev
proves the full compactness theorem for first-order logic, and the "upwards" version of the
Löwenheim–Skolem theorem
.
1940 – Kurt Gödel shows that neither the
continuum hypothesis
nor the
axiom of choice
can be disproven from the standard axioms of set theory.
1943 -
Stephen Kleene
introduces the assertion he calls "
Church's Thesis
" asserting the identity of
general recursive functions
with effective calculable ones.
1944 -
McKinsey
and
Alfred Tarski
study the relationship between
topological closure
and Boolean
closure algebras
.
1944 -
Emil Leon Post
introduces the
partial order
of the
Turing degrees
, and also introduces Post's problem: to determine if there are
computably enumerable
degrees lying in between the degree of computable functions and the degree of the halting problem.
1947 -
Andrey Markov Jr.
and
Emil Post
independently prove the undecidability of the
word problem for semigroups
.
1948 -
McKinsey
and
Alfred Tarski
study closure algebras for S4 and intuitionistic logic.
1950-1999
1950 -
Boris Trakhtenbrot
proves that
validity in all finite models (the finite-model version of the Entscheidungsproblem) is also undecidable; here validity corresponds to non-halting, rather than halting as in the usual case.
1952 - Kleene presents "Turing's Thesis", asserting the identity of computability in general with computability by Turing machines, as an equivalent form of Church's Thesis.
1954 -
Jerzy Łoś
and
Robert Lawson Vaught
independently proved
that a first-order theory which has only infinite models and is
categorical
in any infinite cardinal at least equal to the language cardinality is
complete
. Łoś further conjectures that, in the case where the language is countable, if the theory is categorical in an uncountable cardinal, it is categorical in all uncountable cardinals.
1955 -
Jerzy Łoś
uses the
ultraproduct
construction to construct the
hyperreals
and prove the
transfer principle
.
1955 -
Pyotr Novikov
finds a (
finitely presented
) group whose
word problem
is undecidable.
1955 -
Evertt William Beth
develops
semantic tableaux
.
1958 -
William Boone
independently proves the undecidability of the uniform word problem for groups.
1959 -
Saul Kripke
develops a semantics for quantified S5 based on multiple models.
1959 -
Stanley Tennenbaum
proves that
all countable nonstandard models of
Peano arithmetic
are nonrecursive.
1960 -
Ray Solomonoff
develops the concept of what would come to be called
Kolmogorov complexity
as part of his theory of
Solomonoff induction
.
1961 –
Abraham Robinson
creates
non-standard analysis
.
1963 –
Paul Cohen
uses his technique of
forcing
to show that neither the
continuum hypothesis
nor the
axiom of choice
can be proven from the standard axioms of set theory.
1963 -
Saul Kripke
extends his possible-world semantics to
normal modal logics
.
1965 -
Michael D. Morley
introduces the beginnings of
stable theory
in order to prove
Morley's categoricity theorem
confirming Łoś' conjecture.
1965 -
Andrei Kolmogorov
independently develops the theory of
Kolmogorov complexity
and uses it to analyze the concept of randomness.
1966 -
Grothendieck
proves the
Ax-Grothendieck theorem
: any injective polynomial self-map of
algebraic varieties
over algebraically closed fields is bijective.
1968 -
James Ax
independently proves the Ax-Grothendieck theorem.
1969 -
Saharon Shelah
introduces the concept of
stable
and
superstable theories
.
1970 -
Yuri Matiyasevich
proves that the existence of solutions to
Diophantine equations
is
undecidable
1975 -
Harvey Friedman
introduces the
Reverse Mathematics
program.
See also
History of logic
History of mathematics
Philosophy of mathematics
Timeline of ancient Greek mathematicians
Timeline of mathematics
References
v
t
e
History of mathematics
(
timeline
)
By topic
Algebra
timeline
Algorithms
timeline
Arithmetic
timeline
Calculus
timeline
Grandi's series
Category theory
timeline
Topos theory
Combinatorics
Functions
Logarithms
Geometry
Trigonometry
timeline
Group theory
Information theory
timeline
Logic
timeline
Math notation
Number theory
timeline
Statistics
timeline
Probability
Topology
Manifolds
timeline
Separation axioms
Numeral systems
Prehistoric
Ancient
Hindu-Arabic
By ancient cultures
Mesopotamia
Ancient Egypt
Ancient Greece
China
India
Medieval Islamic world
Controversies
Brouwer–Hilbert
Over Cantor's theory
Leibniz–Newton
Hobbes–Wallis
Other
Women in mathematics
timeline
Approximations of π
timeline
Future of mathematics
Category
v
t
e
Mathematical logic
General
Axiom
list
Cardinality
First-order logic
Formal proof
Formal semantics
Foundations of mathematics
Information theory
Lemma
Logical consequence
Model
Theorem
Theory
Type theory
Theorems (
list
)
and
paradoxes
Gödel's completeness
and
incompleteness theorems
Tarski's undefinability
Banach–Tarski paradox
Cantor's
theorem,
paradox
and
diagonal argument
Compactness
Halting problem
Lindström's
Löwenheim–Skolem
Russell's paradox
Logics
Traditional
Classical logic
Logical truth
Tautology
Proposition
Inference
Logical equivalence
Consistency
Equiconsistency
Argument
Soundness
Validity
Syllogism
Square of opposition
Venn diagram
Propositional
Boolean algebra
Boolean functions
Logical connectives
Propositional calculus
Propositional formula
Truth tables
Many-valued logic
3
finite
∞
Predicate
First-order
list
Second-order
Monadic
Higher-order
Fixed-point
Free
Quantifiers
Predicate
Monadic predicate calculus
Set theory
Set
hereditary
Class
(
Ur-
)
Element
Ordinal number
Extensionality
Forcing
Relation
equivalence
partition
Set operations:
intersection
union
complement
Cartesian product
power set
identities
Types of
sets
Countable
Uncountable
Empty
Inhabited
Singleton
Finite
Infinite
Transitive
Ultrafilter
Recursive
Fuzzy
Universal
Universe
constructible
Grothendieck
Von Neumann
Maps
and
cardinality
Function
/
Map
domain
codomain
image
In
/
Sur
/
Bi
-jection
Schröder–Bernstein theorem
Isomorphism
Gödel numbering
Enumeration
Large cardinal
inaccessible
Aleph number
Operation
binary
Set theories
Zermelo–Fraenkel
axiom of choice
continuum hypothesis
General
Kripke–Platek
Morse–Kelley
Naive
New Foundations
Tarski–Grothendieck
Von Neumann–Bernays–Gödel
Ackermann
Constructive
Formal systems
(
list
),
language
and
syntax
Alphabet
Arity
Automata
Axiom schema
Expression
ground
Extension
by definition
conservative
Relation
Formation rule
Grammar
Formula
atomic
closed
ground
open
Free/bound variable
Language
Metalanguage
Logical connective
¬
∨
∧
→
↔
=
Predicate
functional
variable
propositional variable
Proof
Quantifier
∃
!
∀
rank
Sentence
atomic
spectrum
Signature
String
Substitution
Symbol
function
logical/constant
non-logical
variable
Term
Theory
list
Example
axiomatic
systems
(
list
)
of
arithmetic
:
Peano
second-order
elementary function
primitive recursive
Robinson
Skolem
of the
real numbers
Tarski's axiomatization
of
Boolean algebras
canonical
minimal axioms
of
geometry
:
Euclidean
:
Elements
Hilbert's
Tarski's
non-Euclidean
Principia Mathematica
Proof theory
Formal proof
Natural deduction
Logical consequence
Rule of inference
Sequent calculus
Theorem
Systems
axiomatic
deductive
Hilbert
list
Complete theory
Independence
(
from ZFC
)
Proof of impossibility
Ordinal analysis
Reverse mathematics
Self-verifying theories
Model theory
Interpretation
function
of models
Model
equivalence
finite
saturated
spectrum
submodel
Non-standard model
of arithmetic
Diagram
elementary
Categorical theory
Model complete theory
Satisfiability
Semantics of logic
Strength
Theories of truth
semantic
Tarski's
Kripke's
T-schema
Transfer principle
Truth predicate
Truth value
Type
Ultraproduct
Validity
Computability theory
Church encoding
Church–Turing thesis
Computably enumerable
Computable function
Computable set
Decision problem
decidable
undecidable
P
NP
P versus NP problem
Kolmogorov complexity
Lambda calculus
Primitive recursive function
Recursion
Recursive set
Turing machine
Type theory
Related
Abstract logic
Algebraic logic
Automated theorem proving
Category theory
Concrete
/
Abstract category
Category of sets
History of logic
History of mathematical logic
timeline
Logicism
Mathematical object
Philosophy of mathematics
Supertask
Mathematics portal
Index:
pl
ar
de
en
es
fr
it
arz
nl
ja
pt
ceb
sv
uk
vi
war
zh
ru
af
ast
az
bg
zh-min-nan
bn
be
ca
cs
cy
da
et
el
eo
eu
fa
gl
ko
hi
hr
id
he
ka
la
lv
lt
hu
mk
ms
min
no
nn
ce
uz
kk
ro
simple
sk
sl
sr
sh
fi
ta
tt
th
tg
azb
tr
ur
zh-yue
hy
my
ace
als
am
an
hyw
ban
bjn
map-bms
ba
be-tarask
bcl
bpy
bar
bs
br
cv
nv
eml
hif
fo
fy
ga
gd
gu
hak
ha
hsb
io
ig
ilo
ia
ie
os
is
jv
kn
ht
ku
ckb
ky
mrj
lb
lij
li
lmo
mai
mg
ml
zh-classical
mr
xmf
mzn
cdo
mn
nap
new
ne
frr
oc
mhr
or
as
pa
pnb
ps
pms
nds
crh
qu
sa
sah
sco
sq
scn
si
sd
szl
su
sw
tl
shn
te
bug
vec
vo
wa
wuu
yi
yo
diq
bat-smg
zu
lad
kbd
ang
smn
ab
roa-rup
frp
arc
gn
av
ay
bh
bi
bo
bxr
cbk-zam
co
za
dag
ary
se
pdc
dv
dsb
myv
ext
fur
gv
gag
inh
ki
glk
gan
guw
xal
haw
rw
kbp
pam
csb
kw
km
kv
koi
kg
gom
ks
gcr
lo
lbe
ltg
lez
nia
ln
jbo
lg
mt
mi
tw
mwl
mdf
mnw
nqo
fj
nah
na
nds-nl
nrm
nov
om
pi
pag
pap
pfl
pcd
krc
kaa
ksh
rm
rue
sm
sat
sc
trv
stq
nso
sn
cu
so
srn
kab
roa-tara
tet
tpi
to
chr
tum
tk
tyv
udm
ug
vep
fiu-vro
vls
wo
xh
zea
ty
ak
bm
ch
ny
ee
ff
got
iu
ik
kl
mad
cr
pih
ami
pwn
pnt
dz
rmy
rn
sg
st
tn
ss
ti
din
chy
ts
kcg
ve
Prefix:
a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p
q
r
s
t
u
v
w
x
y
z
0
1
2
3
4
5
6
7
8
9
Portal di Ensiklopedia Dunia
Agama
Bahasa
Biografi
Budaya
Ekonomi
Elektronika
Film
Filsafat
Geografi
Indonesia
Ilmu
Lingkungan
Masyarakat
Matematika
Militer
Mitologi
Musik
Olahraga
Pendidikan
Politik
Sastra
Sejarah
Seni
Teknologi
Kembali kehalaman sebelumnya