Free variables and bound variables

In mathematics, and in other disciplines involving formal languages, including mathematical logic and computer science, a variable may be said to be either free or bound. Some older books use the terms real variable and apparent variable for free variable and bound variable, respectively. A free variable is a notation (symbol) that specifies places in an expression where substitution may take place and is not a parameter of this or any container expression. The idea is related to a placeholder (a symbol that will later be replaced by some value), or a wildcard character that stands for an unspecified symbol.

In computer programming, the term free variable refers to variables used in a function that are neither local variables nor parameters of that function. The term non-local variable is often a synonym in this context.

An instance of a variable symbol is bound, in contrast, if the value of that variable symbol has been bound to a specific value or range of values in the domain of discourse or universe. This may be achieved through the use of logical quantifiers, variable-binding operators, or an explicit statement of allowed values for the variable (such as, "...where is a positive integer".) A variable symbol overall is bound if at least one occurrence of it is bound.[1]pp.142--143 Since the same variable symbol may appear in multiple places in an expression, some occurrences of the variable symbol may be free while others are bound,[1]p.78 hence "free" and "bound" are at first defined for occurrences and then generalized over all occurrences of said variable symbol in the expression. However it is done, the variable ceases to be an independent variable on which the value of the expression depends, whether that value be a truth value or the numerical result of a calculation, or, more generally, an element of an image set of a function.

While the domain of discourse in many contexts is understood, when an explicit range of values for the bound variable has not been given, it may be necessary to specify the domain in order to properly evaluate the expression. For example, consider the following expression in which both variables are bound by logical quantifiers:

This expression evaluates to false if the domain of and is the real numbers, but true if the domain is the complex numbers.

The term "dummy variable" is also sometimes used for a bound variable (more commonly in general mathematics than in computer science), but this should not be confused with the identically named but unrelated concept of dummy variable as used in statistics, most commonly in regression analysis.[2]p.17

Examples

Before stating a precise definition of free variable and bound variable, the following are some examples that perhaps make these two concepts clearer than the definition would:

In the expression

n is a free variable and k is a bound variable; consequently the value of this expression depends on the value of n, but there is nothing called k on which it could depend.

In the expression

y is a free variable and x is a bound variable; consequently the value of this expression depends on the value of y, but there is nothing called x on which it could depend.

In the expression

x is a free variable and h is a bound variable; consequently the value of this expression depends on the value of x, but there is nothing called h on which it could depend.

In the expression

z is a free variable and x and y are bound variables, associated with logical quantifiers; consequently the logical value of this expression depends on the value of z, but there is nothing called x or y on which it could depend.

More widely, in most proofs, bound variables are used. For example, the following proof shows that all squares of positive even integers are divisible by

Let be a positive even integer. Then there is an integer such that . Since , we have divisible by

not only k but also n have been used as bound variables as a whole in the proof.

Variable-binding operators

The following

are some common variable-binding operators. Each of them binds the variable x for some set S.

Many of these are operators which act on functions of the bound variable. In more complicated contexts, such notations can become awkward and confusing. It can be useful to switch to notations which make the binding explicit, such as

for sums or

for differentiation.

Formal explanation

Tree summarizing the syntax of the expression

Variable-binding mechanisms occur in different contexts in mathematics, logic and computer science. In all cases, however, they are purely syntactic properties of expressions and variables in them. For this section we can summarize syntax by identifying an expression with a tree whose leaf nodes are variables, constants, function constants or predicate constants and whose non-leaf nodes are logical operators. This expression can then be determined by doing an inorder traversal of the tree. Variable-binding operators are logical operators that occur in almost every formal language. A binding operator Q takes two arguments: a variable v and an expression P, and when applied to its arguments produces a new expression Q(v, P). The meaning of binding operators is supplied by the semantics of the language and does not concern us here.

Variable binding relates three things: a variable v, a location a for that variable in an expression and a non-leaf node n of the form Q(v, P). Note: we define a location in an expression as a leaf node in the syntax tree. Variable binding occurs when that location is below the node n.

In the lambda calculus, x is a bound variable in the term M = λx. T and a free variable in the term T. We say x is bound in M and free in T. If T contains a subterm λx. U then x is rebound in this term. This nested, inner binding of x is said to "shadow" the outer binding. Occurrences of x in U are free occurrences of the new x.[3]

Variables bound at the top level of a program are technically free variables within the terms to which they are bound but are often treated specially because they can be compiled as fixed addresses. Similarly, an identifier bound to a recursive function is also technically a free variable within its own body but is treated specially.

A closed term is one containing no free variables.

Function expressions

To give an example from mathematics, consider an expression which defines a function

where t is an expression. t may contain some, all or none of the x1, …, xn and it may contain other variables. In this case we say that function definition binds the variables x1, …, xn.

In this manner, function definition expressions of the kind shown above can be thought of as the variable binding operator, analogous to the lambda expressions of lambda calculus. Other binding operators, like the summation sign, can be thought of as higher-order functions applying to a function. So, for example, the expression

could be treated as a notation for

where is an operator with two parameters—a one-parameter function, and a set to evaluate that function over. The other operators listed above can be expressed in similar ways; for example, the universal quantifier can be thought of as an operator that evaluates to the logical conjunction of the Boolean-valued function P applied over the (possibly infinite) set S.

Natural language

When analyzed in formal semantics, natural languages can be seen to have free and bound variables. In English, personal pronouns like he, she, they, etc. can act as free variables.

Lisa found her book.

In the sentence above, the possessive pronoun her is a free variable. It may refer to the previously mentioned Lisa or to any other female. In other words, her book could be referring to Lisa's book (an instance of coreference) or to a book that belongs to a different female (e.g. Jane's book). Whoever the referent of her is can be established according to the situational (i.e. pragmatic) context. The identity of the referent can be shown using coindexing subscripts where i indicates one referent and j indicates a second referent (different from i). Thus, the sentence Lisa found her book has the following interpretations:

Lisai found heri book. (interpretation #1: her = of Lisa)
Lisai found herj book. (interpretation #2: her = of a female that is not Lisa)

The distinction is not purely of academic interest, as some languages do actually have different forms for heri and herj: for example, Norwegian and Swedish translate coreferent heri as sin and noncoreferent herj as hennes.

English does allow specifying coreference, but it is optional, as both interpretations of the previous example are valid (the ungrammatical interpretation is indicated with an asterisk):

Lisai found heri own book. (interpretation #1: her = of Lisa)
*Lisai found herj own book. (interpretation #2: her = of a female that is not Lisa)

However, reflexive pronouns, such as himself, herself, themselves, etc., and reciprocal pronouns, such as each other, act as bound variables. In a sentence like the following:

Jane hurt herself.

the reflexive herself can only refer to the previously mentioned antecedent, in this case Jane, and can never refer to a different female person. In this example, the variable herself is bound to the noun Jane that occurs in subject position. Indicating the coindexation, the first interpretation with Jane and herself coindexed is permissible, but the other interpretation where they are not coindexed is ungrammatical:

Janei hurt herselfi. (interpretation #1: herself = Jane)
*Janei hurt herselfj. (interpretation #2: herself = a female that is not Jane)

The coreference binding can be represented using a lambda expression as mentioned in the previous Formal explanation section. The sentence with the reflexive could be represented as

x.x hurt x)Jane

in which Jane is the subject referent argument and λx.x hurt x is the predicate function (a lambda abstraction) with the lambda notation and x indicating both the semantic subject and the semantic object of sentence as being bound. This returns the semantic interpretation JANE hurt JANE with JANE being the same person.

Pronouns can also behave in a different way. In the sentence below

Ashley hit her.

the pronoun her can only refer to a female that is not Ashley. This means that it can never have a reflexive meaning equivalent to Ashley hit herself. The grammatical and ungrammatical interpretations are:

*Ashleyi hit heri. (interpretation #1: her = Ashley)
Ashleyi hit herj. (interpretation #2: her = a female that is not Ashley)

The first interpretation is impossible. Only the second interpretation is permitted by the grammar.

Thus, it can be seen that reflexives and reciprocals are bound variables (known technically as anaphors) while true pronouns are free variables in some grammatical structures but variables that cannot be bound in other grammatical structures. The binding phenomena found in natural languages was particularly important to the syntactic government and binding theory (see also: Binding (linguistics)).

See also

References

  1. ^ a b W. V. O. Quine, Mathematical Logic (1981). Harvard University Press, 0-674-55451-5.
  2. ^ Robert S. Wolf, A Tour through Mathematical Logic (2005). 978-0-88385-036-7
  3. ^ Thompson 1991, p. 33.
  • Thompson, Simon (1991). Type theory and functional programming. Wokingham, England: Addison-Wesley. ISBN 0201416670. OCLC 23287456.
  • Wolf, Robert S. (2005). A Tour through Mathematical Logic. Vol. 30. Mathematical Association of America. ISBN 978-0-88385-042-8. JSTOR 10.4169/j.ctt5hh94h.

Further reading

Read other articles:

Dutch politician You can help expand this article with text translated from the corresponding article in Dutch. (July 2009) Click [show] for important translation instructions. View a machine-translated version of the Dutch article. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text into the En...

 

Нейро́нная сеть Хо́пфилда (англ. Hopfield network) — полносвязная нейронная сеть с симметричной матрицей связей. В процессе работы динамика таких сетей сходится (конвергирует) к одному из положений равновесия. Эти положения равновесия определяются заранее в процессе обуче

 

En este artículo se detectaron varios problemas. Por favor, edítalo y/o discute los problemas en la discusión para mejorarlo: Carece de fuentes o referencias que aparezcan en una fuente acreditada. Las referencias no son claras o tienen un formato incorrecto. Este aviso fue puesto el 16 de noviembre de 2023. Puedes avisar al redactor principal pegando lo siguiente en su página de discusión: {{sust:Aviso PA|Ley Lara|formato de referencias|referencias}} ~~~~ Ley Lara Pre...

Königswartha Castelo de Königswartha Brasão Mapa KönigswarthaMapa da Alemanha, posição de Königswartha acentuada Administração País  Alemanha Estado Saxônia Região administrativa Dresden Distrito Bautzen Prefeito Swen Nowotny Partido no poder CDU Estatística Coordenadas geográficas 51° 18' 39 N 14° 18' 38 E Área 47,04 km² Altitude 141 m População 3.821[1] (31/12/2009) Densidade populacional 81,23 hab./km² Outras Informações Placa de veículo BZ Cód...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (ديسمبر 2021) دور السيداتمعلومات عامةالصنف الفني فيلم أكشن — فيلم وثائقي — فيلم رياضة تاريخ الصدور 2012 اللغة الأصلية الفرنسية — الولوفية البلد السنغالفرنسا الطاقمالمخ...

 

У Вікіпедії є статті про інших людей із прізвищем Саенс Пенья. Роке Саенс Пенья ісп. Roque Sáenz Peña Del Sagrado Corazón de Jesús Роке Саенс ПеньяПрезидент Аргентини 12 жовтня 1910 — 9 серпня 1914Віцепрезидент Вікторіно де ла ПласаПопередник Хосе Фігероа АлькортаНаступник Вікторіно де л...

Resolusi 499Dewan Keamanan PBBMahkamah InternasionalTanggal21 Desember 1981Sidang no.2.321KodeS/RES/499 (Dokumen)TopikMahkamah InternasionalRingkasan hasil15 mendukungTidak ada menentangTidak ada abstainHasilDiadopsiKomposisi Dewan KeamananAnggota tetap Tiongkok Prancis Britania Raya Amerika Serikat Uni SovietAnggota tidak tetap Spanyol Jerman Timur Irlandia Jepang Meksiko Niger Panama Filipina Tunisia Uganda...

 

Battle of the Anglo-Russian invasion of Holland Battle of KrabbendamPart of Anglo-Russian invasion of HollandDate10 September 1799LocationKrabbendam, The Netherlands52°49′00″N 4°46′12″E / 52.8167°N 4.7700°E / 52.8167; 4.7700Result British victoryBelligerents France Batavian Republic  Great BritainCommanders and leaders Guillaume Marie Anne Brune Herman Willem Daendels Ralph AbercrombyStrength 25,000 23,000Casualties and losses 1,876 dead and wound...

 

Swiss handball player Lea Schüpbach Personal informationFull name Lea SchüpbachBorn (1997-09-10) 10 September 1997 (age 26)Winterthur, SwitzerlandNationality SwissHeight 1.78 m (5 ft 10 in)Playing position GoalkeeperClub informationCurrent club TuS MetzingenNumber 16Youth careerYears Team2010-2013 Yellow WinterthurSenior clubsYears Team2013-2017 Yellow Winterthur2017-2019 Spono Eagles2019-2020 Paris 922020-2022 HSG Bad Wildungen2022- TuS MetzingenNational teamYears Team ...

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Januari 2023. AcamarachiPiliTitik tertinggiKetinggian6.046 m (19.836 ft)Puncak1.608 m (5.276 ft)Masuk dalam daftarUltraKoordinat23°18′S 67°37′W / 23.300°S 67.617°W / -23.300; -67.617Koordinat: 23°18′S 67°37′W...

 

Gölpazarı Hilfe zu Wappen Gölpazarı (Türkei) Basisdaten Provinz (il): Bilecik Koordinaten: 40° 17′ N, 30° 19′ O40.28361111111130.315277777778540Koordinaten: 40° 17′ 1″ N, 30° 18′ 55″ O Höhe: 540 m Einwohner: 6.092[1] (2020) Telefonvorwahl: (+90) 228 Postleitzahl: 11 700 Kfz-Kennzeichen: 11 Struktur und Verwaltung (Stand: 2021) Bürgermeister: Hayri Suer (AKP) Postanschrift: Orta MahalleBakan Fatih Dönmez Cad...

 

Вибори Голови Європе́йського парла́менту 2017 року — це 15-те (з 1979 року) обрання Голови Європе́йського парла́менту депутатами Європейського парламенту, що проходило 17 січня 2017 року. Лише в четвертому турі таємним голосуванням було обрано представника групи Європейськ...

Condiciones de iluminación en el polo sur de la luna. En color blanco, luz permanente; en color negro, sombra permanente (entre los 88° y los 90°) El término pico de luz eterna describe un punto en concreto de un cuerpo del Sistema Solar bañado constantemente por la luz del Sol. Esto es debido tanto a la rotación del cuerpo como a la altitud del punto en cuestión. La existencia de dichos puntos fue propuesta por primera vez por Camille Flammarion en 1879, quien especuló con la existen...

 

This article is about Ranks of the French Army. For more details about the naval ranks, see Ranks in the French Navy. This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Ranks in the French Army – news · newspapers · books · scholar · JSTOR (December 2017) (Learn how and when to remove this template message) Fre...

 

Promotion of fear of the rise of communism in Japan Part of a series onConservatism in Japan Ideologies Fiscal  Nationalist Neo Populist Shōwa Statism State capitalism State Shinto Ultra Themes Anti-communism Asian values Authority Duty Elitism Familialism Filial piety Hierarchy Kokutai Law and order Loyalty Meritocracy Militarism Monarchism Patriotism Racism Social order Sovereignty Tradition Ultranationalism Intellectuals Etō Fukuda Hasuda Hirata Hyakuta Kanokogi Kobayashi Masaki May...

Telephone Wall telephone developed by Herrmann, part of the Communication Museum in Lisbon. The Herrmann wall telephone, also known as the privileged phone, was a type of telephone, created by the Portuguese inventor, Maximiliano Augusto Herrmann, in 1880. The pioneering use of buttons to activate the telephone played a fundamental role to the opening of public lines in the main cities of Portugal.[1] The telephone was composed by a double earpiece, made with long flexible tubes, and ...

 

2019 single by Lady AntebellumWhat If I Never Get Over YouSingle by Lady Antebellumfrom the album Ocean ReleasedMay 17, 2019 (2019-05-17)RecordedMarch 4, 2019 (2019-03-04)StudioStarstruck Recording Studios (Nashville, Tennessee)GenreCountryLength3:26LabelBMLG RecordsSongwriter(s)Ryan HurdSam EllisLaura VeltzJon GreenProducer(s)Dann HuffLady Antebellum singles chronology Heart Break (2017) What If I Never Get Over You (2019) Ocean (2019) Music videoWhat If I Never...

 

Ethnic group of the Philippines IfugaoYoung Ifugao women in traditional attireTotal population82,718[1] (2020 census)Regions with significant populations Philippines (Cordillera Administrative Region)LanguagesIfugao, Ilocano, TagalogReligionChristianity, indigenous folk religionRelated ethnic groupsIgorot peoples The Ifugao people are the ethnic group inhabiting Ifugao province in the Philippines. They reside in the municipalities of Lagawe (capital of Ifugao), Aguinaldo, Alfonso...

Shopping mall in the Philippines SM City BaguioLocationBaguio, PhilippinesCoordinates16°24′32″N 120°35′57″E / 16.40882°N 120.59918°E / 16.40882; 120.59918AddressLuneta Hill, Upper Session RoadOpening dateNovember 21, 2003; 20 years ago (2003-11-21)DeveloperSM Prime HoldingsManagementSM Prime HoldingsOwnerHenry SyArchitectJose Siao Ling and AssociatesNo. of stores and services400+ (as of 2021)No. of anchor tenants10Total retail floor area17...

 

United States historic placeLagonda Club BuildingU.S. National Register of Historic Places Southern and eastern sides of the buildingShow map of OhioShow map of the United StatesLocationNorthwestern corner of High (US 40) and Spring Sts., Springfield, OhioCoordinates39°55′23.8″N 83°48′25.456″W / 39.923278°N 83.80707111°W / 39.923278; -83.80707111Arealess than 1 acre (0.40 ha)Built1895ArchitectFrank M. AndrewsArchitectural styleLate 19th and 20th C...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!