Slope

Slope:

In mathematics, the slope or gradient of a line is a number that describes the direction of the line on a plane.[1] Often denoted by the letter m, slope is calculated as the ratio of the vertical change to the horizontal change ("rise over run") between two distinct points on the line, giving the same number for any choice of points.

The line may be physical – as set by a road surveyor, pictorial as in a diagram of a road or roof, or abstract. An application of the mathematical concept is found in the grade or gradient in geography and civil engineering.

The steepness, incline, or grade of a line is the absolute value of its slope: greater absolute value indicates a steeper line. The line trend is defined as follows:

  • An "increasing" or "ascending" line goes up from left to right and has positive slope: .
  • A "decreasing" or "descending" line goes down from left to right and has negative slope: .

Special directions are:

  • A "(square) diagonal" line has unit slope:
  • A "horizontal" line (the graph of a constant function) has zero slope: .
  • A "vertical" line has undefined or infinite slope (see below).

If two points of a road have altitudes y1 and y2, the rise is the difference (y2y1) = Δy. Neglecting the Earth's curvature, if the two points have horizontal distance x1 and x2 from a fixed point, the run is (x2x1) = Δx. The slope between the two points is the difference ratio:

Through trigonometry, the slope m of a line is related to its angle of inclination θ by the tangent function

Thus, a 45° rising line has slope m = +1, and a 45° falling line has slope m = −1.

Generalizing this, differential calculus defines the slope of a plane curve at a point as the slope of its tangent line at that point. When the curve is approximated by a series of points, the slope of the curve may be approximated by the slope of the secant line between two nearby points. When the curve is given as the graph of an algebraic expression, calculus gives formulas for the slope at each point. Slope is thus one of the central ideas of calculus and its applications to design.

Notation

There seems to be no clear answer as to why the letter m is used for slope, but it first appears in English in O'Brien (1844)[2] who introduced the equation of a line as "y = mx + b", and it can also be found in Todhunter (1888)[3] who wrote "y = mx + c".[4]

Definition

Slope illustrated for y = (3/2)x − 1. Click on to enlarge
Slope of a line in coordinates system, from f(x) = −12x + 2 to f(x) = 12x + 2

The slope of a line in the plane containing the x and y axes is generally represented by the letter m,[5] and is defined as the change in the y coordinate divided by the corresponding change in the x coordinate, between two distinct points on the line. This is described by the following equation:

(The Greek letter delta, Δ, is commonly used in mathematics to mean "difference" or "change".)

Given two points and , the change in from one to the other is (run), while the change in is (rise). Substituting both quantities into the above equation generates the formula:

The formula fails for a vertical line, parallel to the axis (see Division by zero), where the slope can be taken as infinite, so the slope of a vertical line is considered undefined.

Examples

Suppose a line runs through two points: P = (1, 2) and Q = (13, 8). By dividing the difference in -coordinates by the difference in -coordinates, one can obtain the slope of the line:

Since the slope is positive, the direction of the line is increasing. Since |m| < 1, the incline is not very steep (incline < 45°).

As another example, consider a line which runs through the points (4, 15) and (3, 21). Then, the slope of the line is

Since the slope is negative, the direction of the line is decreasing. Since |m| > 1, this decline is fairly steep (decline > 45°).

Algebra and geometry

Slopes of parallel and perpendicular lines
  • If is a linear function of , then the coefficient of is the slope of the line created by plotting the function. Therefore, if the equation of the line is given in the form
    then is the slope. This form of a line's equation is called the slope-intercept form, because can be interpreted as the y-intercept of the line, that is, the -coordinate where the line intersects the -axis.
  • If the slope of a line and a point on the line are both known, then the equation of the line can be found using the point-slope formula:
  • The slope of the line defined by the linear equation
    is
    .
  • Two lines are parallel if and only if they are not the same line (coincident) and either their slopes are equal or they both are vertical and therefore both have undefined slopes.
  • Two lines are perpendicular if the product of their slopes is −1 or one has a slope of 0 (a horizontal line) and the other has an undefined slope (a vertical line).
  • The angle θ between −90° and 90° that a line makes with the x-axis is related to the slope m as follows:
    and
      (this is the inverse function of tangent; see inverse trigonometric functions).

Examples

For example, consider a line running through points (2,8) and (3,20). This line has a slope, m, of

One can then write the line's equation, in point-slope form:

or:

The angle θ between −90° and 90° that this line makes with the x-axis is

Consider the two lines: y = −3x + 1 and y = −3x − 2. Both lines have slope m = −3. They are not the same line. So they are parallel lines.

Consider the two lines y = −3x + 1 and y = x/3 − 2. The slope of the first line is m1 = −3. The slope of the second line is m2 = 1/3. The product of these two slopes is −1. So these two lines are perpendicular.

Statistics

In statistics, the gradient of the least-squares regression best-fitting line for a given sample of data may be written as:

,

This quantity m is called as the regression slope for the line . The quantity is Pearson's correlation coefficient, is the standard deviation of the y-values and is the standard deviation of the x-values. This may also be written as a ratio of covariances:[6]

Calculus

At each point, the derivative is the slope of a line that is tangent to the curve at that point. Note: the derivative at point A is positive where green and dash–dot, negative where red and dashed, and zero where black and solid.

The concept of a slope is central to differential calculus. For non-linear functions, the rate of change varies along the curve. The derivative of the function at a point is the slope of the line tangent to the curve at the point and is thus equal to the rate of change of the function at that point.

If we let Δx and Δy be the distances (along the x and y axes, respectively) between two points on a curve, then the slope given by the above definition,

,

is the slope of a secant line to the curve. For a line, the secant between any two points is the line itself, but this is not the case for any other type of curve.

For example, the slope of the secant intersecting y = x2 at (0,0) and (3,9) is 3. (The slope of the tangent at x = 32 is also 3 − a consequence of the mean value theorem.)

By moving the two points closer together so that Δy and Δx decrease, the secant line more closely approximates a tangent line to the curve, and as such the slope of the secant approaches that of the tangent. Using differential calculus, we can determine the limit, or the value that Δyx approaches as Δy and Δx get closer to zero; it follows that this limit is the exact slope of the tangent. If y is dependent on x, then it is sufficient to take the limit where only Δx approaches zero. Therefore, the slope of the tangent is the limit of Δyx as Δx approaches zero, or dy/dx. We call this limit the derivative.

The value of the derivative at a specific point on the function provides us with the slope of the tangent at that precise location. For example, let y = x2. A point on this function is (−2,4). The derivative of this function is dydx = 2x. So the slope of the line tangent to y at (−2,4) is 2 ⋅ (−2) = −4. The equation of this tangent line is: y − 4 = (−4)(x − (−2)) or y = −4x − 4.

Difference of slopes

The illusion of a paradox of area is dispelled by comparing slopes where blue and red triangles meet.

An extension of the idea of angle follows from the difference of slopes. Consider the shear mapping

Then is mapped to . The slope of is zero and the slope of is . The shear mapping added a slope of . For two points on with slopes and , the image

has slope increased by , but the difference of slopes is the same before and after the shear. This invariance of slope differences makes slope an angular invariant measure, on a par with circular angle (invariant under rotation) and hyperbolic angle, with invariance group of squeeze mappings.[7][8]

Slope (pitch) of a roof

The slope of a roof, traditionally and commonly called the roof pitch, in carpentry and architecture in the US is commonly described in terms of integer fractions of one foot (geometric tangent, rise over run), a legacy of British imperial measure. Other units are in use in other locales, with similar conventions. For details, see roof pitch.

Slope of a road or railway

There are two common ways to describe the steepness of a road or railroad. One is by the angle between 0° and 90° (in degrees), and the other is by the slope in a percentage. See also steep grade railway and rack railway.

The formulae for converting a slope given as a percentage into an angle in degrees and vice versa are:

(this is the inverse function of tangent; see trigonometry)

and

where angle is in degrees and the trigonometric functions operate in degrees. For example, a slope of 100% or 1000 is an angle of 45°.

A third way is to give one unit of rise in say 10, 20, 50 or 100 horizontal units, e.g. 1:10. 1:20, 1:50 or 1:100 (or "1 in 10", "1 in 20", etc.) 1:10 is steeper than 1:20. For example, steepness of 20% means 1:5 or an incline with angle 11.3°.

Roads and railways have both longitudinal slopes and cross slopes.

Other uses

The concept of a slope or gradient is also used as a basis for developing other applications in mathematics:

  • Gradient descent, a first-order iterative optimization algorithm for finding the minimum of a function
  • Gradient theorem, theorem that a line integral through a gradient field can be evaluated by evaluating the original scalar field at the endpoints of the curve
  • Gradient method, an algorithm to solve problems with search directions defined by the gradient of the function at the current point
  • Conjugate gradient method, an algorithm for the numerical solution of particular systems of linear equations
  • Nonlinear conjugate gradient method, generalizes the conjugate gradient method to nonlinear optimization
  • Stochastic gradient descent, iterative method for optimizing a differentiable objective function

See also

References

  1. ^ Clapham, C.; Nicholson, J. (2009). "Oxford Concise Dictionary of Mathematics, Gradient" (PDF). Addison-Wesley. p. 348. Archived from the original (PDF) on 29 October 2013. Retrieved 1 September 2013.
  2. ^ O'Brien, M. (1844), A Treatise on Plane Co-Ordinate Geometry or the Application of the Method of Co-Ordinates in the Solution of Problems in Plane Geometry, Cambridge, England: Deightons
  3. ^ Todhunter, I. (1888), Treatise on Plane Co-Ordinate Geometry as Applied to the Straight Line and Conic Sections, London: Macmillan
  4. ^ Weisstein, Eric W. "Slope". MathWorld--A Wolfram Web Resource. Archived from the original on 6 December 2016. Retrieved 30 October 2016.
  5. ^ An early example of this convention can be found in Salmon, George (1850). A Treatise on Conic Sections (2nd ed.). Dublin: Hodges and Smith. pp. 14–15.
  6. ^ Further Mathematics Units 3&4 VCE (Revised). Cambridge Senior Mathematics. 2016. ISBN 9781316616222 – via Physical Copy.
  7. ^ Bolt, Michael; Ferdinands, Timothy; Kavlie, Landon (2009). "The most general planar transformations that map parabolas into parabolas". Involve: A Journal of Mathematics. 2 (1): 79–88. doi:10.2140/involve.2009.2.79. ISSN 1944-4176. Archived from the original on 2020-06-12. Retrieved 2021-05-22.
  8. ^ Abstract Algebra/Shear and Slope at Wikibooks

Read other articles:

Đừng nhầm lẫn với Dominica. Cộng hòa Dominica Tên bằng ngôn ngữ chính thức República Dominicana (tiếng Tây Ban Nha) Quốc kỳ Huy hiệu Bản đồ Vị trí của Cộng hoà Dominica Tiêu ngữDios, Patria, Libertad(tiếng Tây Ban Nha: Thiên Chúa, Quê hương, Tự do)Quốc ca¡Quisqueyanos Valientes!'¡Valiant Quisqueyans!Hành chínhChính phủDân chủTổng thốngLuis AbinaderThủ đôSanto Domingo18°30′N 69°59′W18°30′B 69°59′T ...

 

Het mondstuk van een trompetHet mondstuk is het deel van een (blaas)muziekinstrument waar de toon gevormd wordt door het laten trillen van lippen of het (enkel/dubbel) riet. De rest van het muziekinstrument zorgt voornamelijk voor versterking van het geluid en de verandering in toonhoogte. Soorten mondstukken Er zijn verschillende soorten mondstukken. Komvormig metalen mondstuk Op veel koperblaasinstrumenten (trompet, trombone, tuba) staat een komvormig metalen mondstuk, waartegen de lippen m...

 

Маскування — термін, який має кілька значень. Ця сторінка значень містить посилання на статті про кожне з них.Якщо ви потрапили сюди за внутрішнім посиланням, будь ласка, поверніться та виправте його так, щоб воно вказувало безпосередньо на потрібну статтю.@ пошук посила...

Der Titel dieses Artikels ist mehrdeutig. Zum auch Ahmadiyya genannten Sufi-Orden siehe Badawiyya. Mirza Ghulam Ahmad, Begründer der Ahmadiyya Die Ahmadiyya (Urdu احمدیہ ‚Ahmad-tum‘) ist eine islamische Gemeinschaft, die von Mirza Ghulam Ahmad in den 1880er Jahren in Britisch-Indien gegründet wurde. Ab 1889 leisteten ihm die Anhänger den Treueid. Sie ließen sich 1901 unter dem Namen Ahmadiyya Musalmans in die offiziellen Zensuslisten der britisch-indischen Verwaltung ein...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Januari 2023. Bandar Udara BajuraIATA: BJUICAO: VNBR Bandar Udara BajuraLokasi bandar udara di NepalInformasiJenisPublikMelayaniBajura, NepalKetinggian dpl1,311 mdplKoordinat29°30′N 81°40′E / 29.500°N 81.667°E / 29.500; 81.6...

 

Дозвіл на використання цієї роботи зберігається в архівах системи VRT. Його ідентифікаційний номер 2014020810007752.Якщо вам потрібне підтвердження, зв'яжіться з кимось із користувачів, що мають доступ до системи.

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada November 2022. CaptiveTheatrical release posterSutradara Jerry Jameson Produser Lucas Akoskin Terry Botwick Alex Garcia David Oyelowo Ken Wales Katrina Wolfe Ditulis oleh Brian Bird SkenarioBrian BirdPemeran David Oyelowo Kate Mara Leonor Varela Jessica Oyelowo Mimi...

 

Grafik fungsi dengan asimtot horizontal (y = 0), vertikal (x = 0), dan miring (garis ungu, diberikan oleh y = 2x) Kurva yang memotong suatu asimtot berkali-kali sebanyak takhingga Dalam geometri analitis, asimtot dari sebuah kurva adalah sebuah garis yang sedemikian rupa sehingga jarak antara kurva dan garis tersebut mendekati nol seiring x atau y (salah satu atau keduanya) mendekati takhingga. Beberapa sumber menyertakan persyaratan bahwa kurva mungkin tidak mel...

 

Portuguese footballer (born 1987) In this Portuguese name, the first or maternal family name is Vilela and the second or paternal family name is Gama. Bruno Gama Gama in action for Dnipro in 2015Personal informationFull name Bruno Alexandre Vilela Gama[1]Date of birth (1987-11-15) 15 November 1987 (age 36)[1]Place of birth Vila Verde, Portugal[1]Height 1.75 m (5 ft 9 in)[1]Position(s) WingerTeam informationCurrent team AEK LarnacaNumber ...

Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Cet article est orphelin. Moins de trois articles lui sont liés (février 2022). Vous pouvez aider en ajoutant des liens vers [[Journée de la résistance à l'occupation de la république autonome de Crimée et de la ville de Sébastopol]] dans les articles relatifs au sujet. Logo de la fête La journée de la résistance à l'occupation de la république autonome de Crimée et de la ville de Sébastopol (e...

 

1709 Ukraina Upptäckt[1]UpptäckareGrigorij SjajnUpptäcktsplatsSimeiz-observatorietUpptäcktsdatum16 augusti 1925BeteckningarMPC-beteckning(1709) UkrainaAlternativnamn1925 QA, 1936 QH[1]Uppkallad efterUkraina (land)[2]SmåplanetskategoriAsteroidbältetOmloppsbana[3]Epok: 21 januari 2022Aphelium2,887 AUPerihelium1,870 AUHalv storaxel2,378 AUExcentricitet0,2136949Siderisk omloppstid3,67 årMedelomloppshastighet19,31 km/sMedelanomali92,73°Inklination7,556°Longitud för uppstigande nod30...

 

Compact executive car manufactured by Opel Chevrolet Vectra redirects here. For the version of the car sold in Brazil from 2009 to 2011, see Opel Astra. Motor vehicle Opel VectraOpel Vectra C (facelift)OverviewManufacturerOpel (General Motors)Also calledVauxhall Cavalier (1988–1995)Vauxhall Vectra (1995–2008)Holden VectraChevrolet VectraProductionOctober 1988 – June 2010Body and chassisClassLarge family car (D-segment)LayoutFront-engine, front-wheel-drive/four-wheel-driveChronology...

Dave BautistaLahir18 Januari 1969 (umur 54)Washington D.C., Amerika Serikat[1]Tempat tinggalLos Angeles, California, Amerika Serikat[1]Situs webdemon-wrestling.comKarier gulat profesionalNama ringBatista[2]Dave Batista[3]Deacon Batista[1]Leviathan[1]Kahn / KhanThe Animal[1]Tinggi198 cm (6 ft 6 in) [2]Berat290 pon (130 kg)[2]Asal dariWashington D.C.[2]Dilatih olehAfa Anoaʻi[4]...

 

Medical conditionApparent mineralocorticoid excess syndromeOther namesAME, 11-beta-hydroxysteroid dehydrogenase deficiency type 2, Ulick syndrome.Apparent mineralocorticoid excess syndrome has an autosomal recessive pattern of inheritanceSpecialtyMedical genetics, endocrinology SymptomsHypertension, hypokalemia, metabolic alkalosis, and low plasma renin activity.[1] Apparent mineralocorticoid excess is an autosomal recessive[2] disorder causing hypertension (high blood pr...

 

Papiro 35Manoscritto del Nuovo TestamentoSimbolo p {\displaystyle {\mathfrak {p}}} 35 TestoVangelo secondo Matteo 7; 15 † DatazioneIV secolo Scritturagreco ConservazioneBiblioteca Medicea Laurenziana Dimensione26 x 15 cm Tipo testualealessandrino CategoriaI Il Papiro 35 ( p {\displaystyle {\mathfrak {p}}} 35) è uno dei più antichi manoscritti esistenti del Nuovo Testamento, datato paleograficamente agli inizi del IV secolo.[1] È scritto in greco. Indice 1 Contenuto del papiro 2 N...

Street in Kowloon, Hong Kong For Boundary Street in Washington, D.C., see Florida Avenue. 22°19′35.71″N 114°10′4.40″E / 22.3265861°N 114.1678889°E / 22.3265861; 114.1678889 This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Boundary Street – news · newspapers · books · scholar ...

 

Virgen de los Reyes Católicos, de maestro anónimo, 1490. Hispano flamenco es un término con el que la historiografía[1]​ designa la estrecha relación entre la cultura y el arte del espacio conocido impropiamente como Flandes (en realidad el Estado borgoñón) y la Monarquía Hispánica de la época de los Reyes Católicos (1469-1516), aunque realmente la relación se produjo especialmente con la Corona de Castilla y se extendió durante todo el Antiguo Régimen.[2]​ La relaci...

 

Berikut adalah daftar negara dan teritori yang sebelumnya dikuasai oleh Britania Raya atau merupakan bagian dari Imperium Britania disertai hari kemerdekaannya: Negara Tanggal Tahun Catatan  Afghanistan 08-19 19 Agustus 1919  Antigua dan Barbuda 11-01 1 November 1981  Australia 01-26 26 Januari 1788  Bahama 07-10 10 Juli 1973  Bahrain 12-16 16 Desember 1971 15 Agustus 1971  Barbados 11-30 30 November 1966 Undang-Undang Kemerdekaan Barbados 1966  Belize 09-21...

Territorial authority district in Northland, New ZealandWhangarei DistrictTerritorial authority districtMt Lion at the Whangarei Heads as viewed from Mt ManaiaCountryNew ZealandRegionNorthlandDistrictWhangarei District CouncilWardsMāoriBream BayHikurangi-CoastalMangakahia-MaungatapereWhāngarei HeadsWhangārei UrbanLocal hapūNgāti HineNgāti WaiPatuharakekeTe ParawhauSeatWhangāreiGovernment • MayorVince Cocurullo[1] • Deputy MayorPhil Halse [2] ...

 

Railway station in the Cynon Valley, Wales AbercynonArriva Trains Wales Class 150 Sprinter at the station in May 2016General informationLocationAbercynon, Rhondda Cynon TafWalesCoordinates51°38′42″N 3°19′37″W / 51.645°N 3.327°W / 51.645; -3.327Grid referenceST082948Managed byTransport for WalesPlatforms2Other informationStation codeACYClassificationDfT category F1Key dates9 October 1840Station opens as Navigation House6 August 1846Renamed Aberdare Junction1...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!