Sometimes called the Marconi-EMI system, it was developed in 1934 by the EMI Research Team led by Isaac Shoenberg.[1] The figure of 405 lines had been chosen following discussions over Sunday lunch at the home of Alan Blumlein.[2] The system used interlacing; EMI had been experimenting with a 243-line all-electronic interlaced system since 1933. In the 405 system the scanning lines were broadcast in two complementary fields, 50 times per second, creating 25 frames per second. The actual image was 376 lines high and interlaced, with additional unused lines making the frame up to 405 lines to give the slow circuitry time to prepare for the next frame; in modern terms it would be described as "376i".
At the time of its introduction the 405-line system was referred to as "high definition" – which it was, compared to earlier systems, although of lower definition than 625-line and later standards.
In the United States, the FCC had briefly approved a 405-line color television standard in October 1950, which was developed by CBS.[3] The CBS system was incompatible with existing black-and-white receivers. It used a rotating color wheel, reduced the number of scan lines from 525 to 405, and increased the field rate from 60 to 144, but had an effective frame rate of only 24 frames per second.
History
United Kingdom
Development
In 1934, the British government set up a committee (the "Television Committee") to advise on the future of TV broadcasting. The committee recommended that a "high definition" service (defined by them as being a system of 240 lines or more) should be run and established by the BBC. The recommendation was accepted and tenders were sought from industry. Two tenders were received: one from the Baird company offering a 240-line mechanical system, and the other from EMI offering a 405-line all-electronic one. The Television Committee advised that they were unable to choose between the two systems and that both tenders should be accepted, the two systems to be run together for an experimental period.
Initial broadcasts
Broadcasting of the resulting BBC Television Service from its Alexandra Palace site began in November 1936, at first time-sharing broadcasts with the 240-line Baird system; however, in January 1937, after three months of trials, the Baird system was abandoned in favour of exclusive broadcasting with the 405-line Marconi-EMI system on VHF. This became the standard for all British TV broadcasts until the 1960s.
It soon became apparent that television reception was also possible well outside the original intended service area. In February 1938, engineers at the RCA Research Station, Riverhead, Long Island, New York, in the US, were able to receive the BBC signal 5,000 km (3,100 mi) away, due to the signal being "bounced" back to earth from the ionosphere. A few minutes of programming were recorded on 16mm movie film. This is now considered to be the only surviving example of pre-war live British television.[4] The images recorded included two of the original three BBC announcers, Jasmine Bligh and (in a brief shot) Elizabeth Cowell, an excerpt from an unknown period costume drama, and the BBC's station identification transmitted at the beginning and end of the day's programmes.
The BBC temporarily ceased transmissions on 1 September 1939, the day of the German invasion of Poland, for the outbreak of World War II was imminent. After the BBC Television Service recommenced in 1946, distant reception reports were received from various parts of the world, including Italy, South Africa, India, the Middle East, North America and the Caribbean.
The BBC lost its monopoly of the British television market in 1954, and the following year the commercial network ITV, comprising a consortium of regional companies, was launched.
Experimental colour transmissions
During the late 1950s and early-to-mid 1960s, some experimental colour broadcasts were made in the UK with the 405-line system using NTSC colour encoding (this encoding was a 1953 enhancement of the original 1941 NTSC monochrome standard, added to the NTSC standard so that it could also provide for colour broadcasting).[5] The subcarrier frequency was 2.6578125 MHz (525/2 times line frequency) with an "I" signal bandwidth of 500 kHz and a "Q" signal bandwidth of 300 kHz. Tests with PAL, SECAM and other NTSC subcarrier frequencies were also attempted.[6]
Some of these broadcasts were on UHF (also an experimental technology at the time), while others were carried over the regular VHF network outside of normal broadcasting hours.
Co-existence with 625-line broadcasts
In 1964, the BBC launched its BBC2 service on UHF using only a 625-line system, which older sets could not receive. For several years BBC1 and ITV transmitted using the 405-line and BBC2 with the 625-line standard; the only way to receive them all was to use a complex "dual-standard" 405- and 625-line, VHF and UHF, receiver. The introduction of colour on BBC2 in 1967 necessitated an even more complex dual-standard set to receive all three channels with BBC2 in colour. Over time in 1968 and 1969, the different ITV regional channels and BBC1 switched over to broadcasting on the 625-line as well as the 405-line, a process which once completed meant that only 625-lines were necessary to receive all channels, with dual standard receivers no longer necessary.
In November 1969, BBC1 and ITV started broadcasting in 625-line PAL colour on UHF. Their programming was now entirely produced using the new 625-line standard, and thus the 405-line broadcasts served only as a rebroadcast in monochrome for people who did not have the newer receivers and who could only receive BBC1 and ITV. This situation continued up to 3–4 January 1985, with 405-line VHF broadcasts only being able to pick up BBC1 and ITV regionals, and in monochrome only, while 625-line UHF broadcasts could also broadcast BBC2 and Channel 4/S4C in addition to BBC1 and ITV, and in either colour or monochrome.
Switchover
One reason for the long switchover period was the difficulty in matching the coverage level of the new UHF 625-line service with the very high level of geographic coverage achieved with the 405-line VHF service.
The last 405-line transmissions were seen on 4 January 1985 in Scotland; they had been officially shut down one day earlier in the rest of the UK (although they were actually switched off at various points the next day). This left only the UHF PAL system in operation in the UK. The frequencies used by the 405-line system were initially left empty, but were later sold off; they are now used for other purposes, including DAB and trunkedPMR commercial two-way radio systems.
Ireland
Ireland's use of the 405-line system began in 1961, with the launch of Telefís Éireann, but only extended to two main transmitters and their five relays, serving the east and north of the country. This was because many people in these areas already had 405-line sets for receiving UK broadcasts from Wales or Northern Ireland. Telefís Éireann's primary standard was 625-line; it began using this in the summer of 1962, more than two years before the UK had any 625-line channels.
The last 405-line relays, in County Donegal, were turned off in 1982; the main transmitters had been shut down in 1978 to free up frequencies for RTÉ 2, and after then the relays had been fed by standards converters from the local 625-line transmitter.
For the last five years of RTÉ's 405-line simulcasting, a simple orthicon converter was used, essentially a 405-line camera pointed at a 625-line monitor, as the more expensive system converters that RTÉ had previously used were now inoperable.
The 405-line system was used in the Rediffusion Television cable television service in Hong Kong, established in 1957, making it both the first British colony and the first predominantly Chinese city to have television. The service of 405-line system ended in 1973, replaced by 625-line PAL system free-to-air broadcast.
After the U.S. adopted the NTSC 525-line monochrome standard for commercial broadcasting in 1941, subsequent efforts were made to upgrade the standard so that it could also accommodate a "compatible" colour broadcasting system. Eventually these efforts would prove successful, but because repeated attempts had consistently produced unsatisfactory results, in 1950 the United States Federal Communications Commission (FCC) officially approved for commercial broadcast an alternate 405-line broadcasting system which the Columbia Broadcasting System (CBS) had developed over the past decade.[9]
This system was a field-sequential colour system which electronically transmitted a 405-line monochrome picture. Colour was provided mechanically by means of a synchronized rotating transparent Red-Green-Blue disk, which was placed in front of the receiver screen.
Regular broadcast channels were used to transmit the 405-line system signals, but the millions of existing NTSC 525-line television receivers could only correctly process the audio portion of these transmissions, so unless these sets were modified they would only display a jumbled picture.[9]
CBS aired a variety show special entitled Premiere on 25 June 1951 to officially launch commercial 405-line colour broadcasting, but just four months later CBS ended its colour broadcasts. CBS's efforts were hindered from the beginning by a widespread lack of acceptance, and the ultimate setback came at the end of the year when the U.S. government temporarily banned the manufacture of colour televisions, ostensibly to conserve resources during the Korean War.[10]
In 1953, the FCC rescinded its approval of the CBS 405-line colour system. In its place it approved a newly improved and now satisfactory second NTSC 525-line standard which had been developed by RCA. It provided for colour broadcasting yet remained compatible with existing 525-line monochrome sets.[5]
405-line is System A in the CCIR assignment of broadcast systems. The audio uses amplitude modulation rather than the frequency modulation in use on modern analogue systems. In addition, the system was broadcast in an aspect ratio of 5:4 until 3 April 1950, when it changed to the more common 4:3 format.[11]
All System A transmitters used vestigial sideband transmission, with the single exception of Alexandra Palace in London, which closed down in 1957 when it was replaced by Crystal Palace.
System
Lines
Frame rate
Channel bandwidth (in MHz)
Visual bandwidth (in MHz)
Sound offset
Vestigial sideband
Vision modul.
Sound modul.
Aspect ratio
Effective resolution (4:3)
System A
405
25
5
3
−3.5
0.75
Pos.
AM
4:3 (5:4 before 1950)
503 × 377 (theoretical)
Field rate
Since the mid-1930s it has been standard practice to use a field frequency equal to the AC mains electric supply frequency (or a submultiple thereof), 50 Hz in most countries, (60 Hz in the Americas) because studio lighting generally uses an alternating current supply to the lamps and if these were not synchronized with the field frequency, an unwelcome strobe effect could appear on TV pictures. Secondly, the smoothing (filtering) of power supply circuits in early TV receivers was rather poor, and ripple superimposed on the DC could cause visual interference. However, the main problem was the susceptibility of the electron beam in the CRT being deflected by stray magnetic fields from nearby transformers or motors.[12] If the picture was locked to the mains frequency, this interference would at least be static on the screen and thus relatively unnoticeable. The very earliest TV sets used a mains transformer; care had to be taken in design to prevent the transformer's stray magnetic field from disturbing the electron beam in the CRT.
Vertical resolution
An interlaced system requires accurate positioning of scanning lines so the horizontal and vertical timebase must be in a precise ratio. This is done by passing the one through a series of electronic divider circuits to produce the other. Each division is by an odd integer. Therefore, there has to be a straightforward mathematical relationship between the line and field frequencies, the latter being derived by dividing down from the former. The technology constraints of the 1930s meant that this division process could only be done using small integers, preferably no greater than 7, for good stability. The number of lines was odd because of 2:1 interlace. The 405-line system used a vertical frequency of 50 Hz (standard AC mains supply frequency in Britain) and a horizontal one of 10,125 Hz (50 × 405 ÷ 2 or, using the frame rate, 25 x 405), with 405 being derived from (3 × 3 × 3 × 3 × 5).
Video recordings
Original
A few 405-line videotapes still survive. However, the majority of surviving 405-line programmes are in the form of black and white film telerecordings, usually with optical soundtracks. Occasionally video re-recording would be employed instead, with a 625-line camera pointing at a 405-line monitor. This preserves the original 50-field interlaced format, but with some geometrical distortions owing to the curvature of the CRT monitors used at the time.
Modern
405-line programming may be recorded and played on an unmodified VHS or Betamax video recorder, as long as the input to the recorder is baseband rather than RF. Thus, various modern video recordings of 405-line programming also exist. Betamax was sometimes preferred for this, as the dropout compensator could be switched off on certain models for use with PCM digital audio decoders.
Comparison with later standards
Bandwidth
When used with vestigial sideband filtering, the total bandwidth of a 405-line TV channel is 5 MHz, significantly less than the 8 MHz required by the 625-line System I, which replaced it in Britain. Systems in other countries used anything between six and fourteen megahertz of bandwidth per channel.
Coverage
The use of VHF frequencies combined with the narrow vision bandwidth — AM signals (at VHF low band frequencies) are less affected by noise as bandwidth is reduced — meant that 405-line signals could be received well even under marginal conditions. Therefore, it was possible to cover virtually all of the UK with a relatively small number of transmitting stations.
Susceptibility to impulse interference
The use of AM (rather than FM) for sound and the use of positive (rather than negative) video modulation made 405-line signals very prone to audible and visible impulse interference, such as that generated by the ignition systems of vehicles. Such interference manifested itself as a loud popping on sound and large bright spots on the picture, which viewers found much more noticeable than the dark spots encountered when such interference is encountered on a signal using negative video modulation. With positive modulation, interference could easily be of similar amplitude to the sync pulses (which were represented by 0–30% of the transmitter output). The early time-base circuits were less able to discriminate between the signals and the picture would break up. By contrast, in negative modulation sync, pulses represent peak transmitter output (70–100% output). As a result, impulse interference would cause visual dark spots before it was large enough to affect the synchronisation of the picture. If the interference was large enough, the picture was probably unwatchable anyway. The later introduction of flywheel sync circuits rendered the picture much more stable, but these could not have alleviated some of the problems with positive modulation. Almost all television systems that succeeded the 405-line system adopted negative modulation for this reason alone.
Automatic gain control
The AGC circuit was problematic. First-generation AGC merely detected the average value of the transmitted signal; however, due to the positively modulated carrier, peak power represented peak white – not guaranteed to be present. Thus for a completely black picture, the AGC circuit would increase the RF gain to restore the average carrier amplitude. The result was a screen that was not black but mid-grey. In fact, the total light output of early TV sets was practically constant regardless of the picture content.
By the mid-1950s, several manufacturers started to introduce gated-AGC systems to avoid this issue.[13] A delayed pulse was derived from the recovered line-sync signal. This pulse would trigger a gate which would sample the received video signal during the "back porch" which was a guaranteed black-level transmitted between the end of the line-sync pulse and the start of the picture information.
The introduction of negative modulation in later systems simplified the problem because peak carrier power represented sync pulses (which were always guaranteed to be present). A simple peak-detector AGC circuit would detect the amplitude of only the sync pulses, thus measuring the strength of the received signal.
Whistle due to line output transformer magnetostriction
The 405-line system produced a noticeable 10,125 Hz whistle in many sets, equal to the number of lines per second. This high-pitched whistle was caused by magnetostriction in the line output transformer.
This is a common artifact in sets that use a cathode ray tube. While all CRT-based television systems produce such a noise, the higher number of lines per second in later standards produces frequencies (PAL's 15,625 Hz and NTSC's 15,734 Hz) that are at the upper end of the audible spectrum, which not all people are able to hear. Modern sets using plasma, LCD or OLED display technology are completely free of this effect as they are composed of a million or more individually controllable elements, rather than using a single magnetically deflected beam, so there is no requirement to generate the scanning signal.
Equalizing pulses
The absence of equalizing pulses to facilitate interlace was defended at the start of the BBC service on the grounds that it only caused a lack of interlace with field synchronizing separators of the integrator type, and that there were, even at that time, numerous other circuits which gave completely accurate interlace without equalizing pulses. The question was raised again from time to time, but a series of tests, conducted during 1952 in cooperation with the British Radio Equipment Manufacturers' Association, confirmed that there was no general need for equalizing pulses.[14]
Spot wobble
On some larger TV screen sizes, the scanned lines were not fat enough to give 100% coverage of the CRT. The result was a lined picture with darkness between each horizontal scanned line, reducing picture brightness and contrast. Larger screen sets often used a spot wobble oscillator, that slightly elongated the scanning spot vertically at high frequency to avoid this line separation effect without reducing horizontal sharpness. Spot wobble was also utilised when making telerecordings of 405-line programmes.
^Alexander, Robert Charles (1999). The Inventor of Stereo: The Life and Works of Alan Dower Blumlein, p. 160. Oxford, Focal Press. ISBN0-240-51628-1.
^A third line sequential system from Color Television Inc. (CTI) was also considered. The CBS and final NTSC systems were called field-sequential and dot-sequential systems, respectively.
Robson, Neil. 'Living Pictures Out of Space: The Forlorn Hopes for Television in Pre-1939 London', Historical Journal of Film, Radio and Television, vol. 24, no. 2 (June 2004), pp. 223–32.
Provinsi Madras (1947 - 1950)Negara Bagian Madras (1950 - 1969)Negara Bagian India1950–1969Peta India Selatan(1953-1956) sebelum Undang-Undang Reorganisasi Negara-Negara Bagian, 1956 dengan Negara Bagian Madras diwarnai kuningSejarahSejarah • Negara Bagian Madras dibentuk dari Provinsi Madras 1950• Berganti nama menjadi Tamil Nadu 1969 Didahului oleh Digantikan oleh Kepresidenan Madras Tamil Nadu Negara-Negara Bagian India sejak 1947 Negara Bagian Madras adalah sebuah neg...
Université Paris-VIII Universitas de Paris VIII Vincennes–Saint-Denis (Prancis: Université de Paris VIII Vincennes–Saint-Denis) adalah universitas riset publik di Prancis. Sebuah universitas yang mengkhususkan diri dalam ilmu budaya, menampung 22.000 mahasiswa4, 900 guru-peneliti, dan 700 anggota staf administrasi.[1] Lulusan terkenal Hélène Cixous, seorang pengajar Profesor terkenal Michel Foucault, seorang filsuf Prancis Jacques Rancière, seorang filsuf asal Prancis Ref...
2003 studio album by Don McLeanThe Western AlbumStudio album by Don McLeanReleased2003GenreRockLength40:03LabelDon McLean RecordsDon McLean chronology You've Got to Share: Songs for Children(2003) The Western Album(2003) Christmastime!(2004) Professional ratingsReview scoresSourceRatingAllmusic [1] The Western Album is an album by American singer-songwriter Don McLean, released in 2003. Track listing Timber Trail (Tim Spencer) – 3:01 Ridin' Down the Canyon (Gene Autry, S. Bu...
S.E.2 The S.E.2 in its final form, at the Royal Aircraft Factory, Farnborough Role Scout aircraftType of aircraft National origin United Kingdom Manufacturer Royal Aircraft Factory Designer Geoffrey de Havilland (B.S.1) First flight March 1913 Introduction 1914 Retired 1915 Primary user Royal Flying Corps Number built 1 The Royal Aircraft Factory S.E.2 (Scout Experimental) was an early British single-seat scout aircraft. Designed and built at the Royal Aircraft Factory in 1912–13 as th...
Coventry Patmore Retrato de Coventry Patmore, obra de John Singer Sargent (1894)Información personalNacimiento 23 de julio de 1823 Municipio de Redbridge (Reino Unido) Fallecimiento 26 de noviembre de 1896 (73 años)Walhampton (Reino Unido) Nacionalidad BritánicaReligión Iglesia católica FamiliaPadre Peter George Patmore Cónyuge Emily Patmore Información profesionalOcupación Poeta, escritor y crítico literario Firma [editar datos en Wikidata] Coventry Kersey Dighton Patmore ...
تتفاعل الجزيئات الشمسية مع مجال الأرض المغناطيسي العاصفة الشمسية هي اضطراب مؤقت في مجال الأرض المغناطيسي والسبب في ذلك هو القدرة الشمسية [1] العاصفة الجيومغناطيسية مكون رئيسي للطقس الفضائي وتساهم بالعديد من المكونات الأخرى للطقس الفضائي. والعاصفة الجيومغناطيسية تسب...
San Martín de la Vega علمOfficial seal of San Martín de la Vegaشعار الاسم الرسمي (بالإسبانية: San Martín de la Vega.)[1] موقع San Martín de la Vega الإحداثيات 40°12′34″N 3°34′20″W / 40.209444444444°N 3.5722222222222°W / 40.209444444444; -3.5722222222222 [2] تقسيم إداري البلد إسبانيا منطقة حكم ذاتي إسبانية منطقة ...
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Bangladesh–Russia relations – news · newspapers · books · scholar · JSTOR (August 2015) (Learn how and when to remove this template message) Bilateral relationsBangladesh–Russia Relations relations Bangladesh Russia EnvoyDr. Saiful HaqoueAlexander l. Ignato...
Ikfina FahmawatiPotret resmi Ikfina Fahmawati sebagai Bupati Mojokerto Bupati Mojokerto ke-25PetahanaMulai menjabat 26 Februari 2021GubernurKhofifah Indar ParawansaWakilMuhammad Al BarraPendahuluPungkasiadi Informasi pribadiLahir11 Januari 1978 (umur 45)Ponorogo, Jawa TimurSuami/istriMustofa Kamal PasaAnak3Alma materUniversitas BrawijayaUniversitas SurabayaSunting kotak info • L • B dr. Ikfina Fahmawati, M.Si. (lahir 11 Januari 1978) adalah Bupati Mojokerto periode ...
Kaisar Etiopia Bekas Kerajaan Imperial Lambang Kekaisaran Haile Selassie I Penguasa pertama Menelik I Penguasa terakhir Haile Selassie I Kediaman resmi Istana Menelik Penunjuk Warisan Pendirian s. 980 SM[1] Pembubaran 21 Maret 1975 Penuntut takhta Zera Yacob Amha Selassie Artikel ini mengandung teks Ethiopik. Tanpa dukungan perenderan yang baik, Anda mungkin akan melihat tanda tanya, kotak, atau simbol lain, bukan karakter Ethiopik. Kaisar Etiopia (bahasa Ge'ez: ንጉሠ ነ...
Public housing estate in Kwai Chung, Hong Kong Kwai Hing EstateKwai Hing EstateGeneral informationLocation2 Wo Kwai Lane, Kwai ChungNew Territories, Hong KongCoordinates22°21′57″N 114°07′56″E / 22.365822°N 114.132148°E / 22.365822; 114.132148StatusCompletedCategoryPublic rental housingPopulation6,953[1] (2016)No. of blocks4[2]No. of units1,528[3]ConstructionConstructed1970; 53 years ago (1970) (Before reconstru...
Indian saint This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (April 2017) (Learn how and when to remove this template message) Statue of Kannappa at a museum in Thanjavur Kannappa is a legendary figure in Telugu folklore who transformed from an atheist to a devoted follower of the Hindu god Shiva. He is closely associated with the Srikalahasteeswara Temple in ...
Cap of type originally often worn by seafarers A Greek fisherman's cap A mariner's cap also called a skipper's cap, sailor's cap or fiddler's cap, is a peaked cap, usually made from black or navy blue wool felt, but also from corduroy or blue denim. Originally popular with seafarers, it is often associated with sailing and maritime settings, especially fishing, yachting and recreational sailing. It has sometimes become a fashion item in the West, for example being worn by John Lennon in the m...
United States Supreme Court case Kansas v. ColoradoSupreme Court of the United StatesArguedFull case nameState of Kansas v. State of ColoradoCitations185 U.S. 125 (1902); 206 U.S. 46 (1907); 320 U.S. 383 (1943); 514 U.S. 673 (1995); 533 U.S. 1 (2001); 543 U.S. 86 (2004); 556 U.S. 98 (2009)Prior historyOriginal JurisdictionArgumentOral argumentHoldingColorado has been using too much of the Arkansas River and so must pay interest on the judgment going back more than 20 years. Kansas gets money ...
1984 film by A. Kodandarami Reddy This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Rustum 1984 film – news · newspapers · books · scholar · JSTOR (June 2019) (Learn how and when to remove this template message) RustumTheatrical release posterDirected byA. Kodandarami ReddyWritten bySatyanand (dialogues)S...
2006 video game 2005 video gameEmergency 3: Mission:LifeEmergency 3: Mission Life Cover ArtDeveloper(s)Sixteen Tons EntertainmentPublisher(s)EU: Take-Two InteractiveNA: Strategy FirstSeriesEmergencyPlatform(s)Microsoft WindowsReleaseEU: January 21, 2005NA: April 4, 2006[1]Genre(s)Real-time strategy, simulationMode(s)Single-PlayerEmergency 3: Mission:Life is the third game in the rescue simulation Emergency series, developed by Sixteen Tons Entertainment and released between 2005 and 2...
Telecommunications in Kuwait provides information about the telephone, Internet, radio, and television infrastructure in Kuwait. Infrastructure Telephones Telephones - main lines in use: 514,700 (2011),[1] 510,300 (2005) Telephones - mobile cellular: 4.9 million (2011),[1] 2.7 million (2007) Telephone system:[1] general assessment: the quality of service is excellent domestic: new telephone exchanges provide a large capacity for new subscribers; trunk traffic is carrie...