Share to: share facebook share twitter share wa share telegram print page

Binary operation

A binary operation is a rule for combining the arguments and to produce

In mathematics, a binary operation or dyadic operation is a rule for combining two elements (called operands) to produce another element. More formally, a binary operation is an operation of arity two.

More specifically, a binary operation on a set is a binary operation whose two domains and the codomain are the same set. Examples include the familiar arithmetic operations of addition, subtraction, and multiplication. Other examples are readily found in different areas of mathematics, such as vector addition, matrix multiplication, and conjugation in groups.

An operation of arity two that involves several sets is sometimes also called a binary operation. For example, scalar multiplication of vector spaces takes a scalar and a vector to produce a vector, and scalar product takes two vectors to produce a scalar. Such binary operations may also be called binary functions.

Binary operations are the keystone of most structures that are studied in algebra, in particular in semigroups, monoids, groups, rings, fields, and vector spaces.

Terminology

More precisely, a binary operation on a set is a mapping of the elements of the Cartesian product to :[1][2][3]

The closure property of a binary operation expresses the existence of a result for the operation given any pair of operands.[4]

If is not a function but a partial function, then is called a partial binary operation. For instance, division of real numbers is a partial binary operation, because one can not divide by zero: is undefined for every real number . In both model theory and classical universal algebra, binary operations are required to be defined on all elements of . However, partial algebras[5] generalize universal algebras to allow partial operations.

Sometimes, especially in computer science, the term binary operation is used for any binary function.

Properties and examples

Typical examples of binary operations are the addition () and multiplication () of numbers and matrices as well as composition of functions on a single set. For instance,

  • On the set of real numbers , is a binary operation since the sum of two real numbers is a real number.
  • On the set of natural numbers , is a binary operation since the sum of two natural numbers is a natural number. This is a different binary operation than the previous one since the sets are different.
  • On the set of matrices with real entries, is a binary operation since the sum of two such matrices is a matrix.
  • On the set of matrices with real entries, is a binary operation since the product of two such matrices is a matrix.
  • For a given set , let be the set of all functions . Define by for all , the composition of the two functions and in . Then is a binary operation since the composition of the two functions is again a function on the set (that is, a member of ).

Many binary operations of interest in both algebra and formal logic are commutative, satisfying for all elements and in , or associative, satisfying for all , , and in . Many also have identity elements and inverse elements.

The first three examples above are commutative and all of the above examples are associative.

On the set of real numbers , subtraction, that is, , is a binary operation which is not commutative since, in general, . It is also not associative, since, in general, ; for instance, but .

On the set of natural numbers , the binary operation exponentiation, , is not commutative since, (cf. Equation xy = yx), and is also not associative since . For instance, with , , and , , but . By changing the set to the set of integers , this binary operation becomes a partial binary operation since it is now undefined when and is any negative integer. For either set, this operation has a right identity (which is ) since for all in the set, which is not an identity (two sided identity) since in general.

Division (), a partial binary operation on the set of real or rational numbers, is not commutative or associative. Tetration (), as a binary operation on the natural numbers, is not commutative or associative and has no identity element.

Notation

Binary operations are often written using infix notation such as , , or (by juxtaposition with no symbol) rather than by functional notation of the form . Powers are usually also written without operator, but with the second argument as superscript.

Binary operations are sometimes written using prefix or (more frequently) postfix notation, both of which dispense with parentheses. They are also called, respectively, Polish notation and reverse Polish notation .

Binary operations as ternary relations

A binary operation on a set may be viewed as a ternary relation on , that is, the set of triples in for all and in .

Other binary operations

For example, scalar multiplication in linear algebra. Here is a field and is a vector space over that field.

Also the dot product of two vectors maps to , where is a field and is a vector space over . It depends on authors whether it is considered as a binary operation.

See also

Notes

  1. ^ Rotman 1973, pg. 1
  2. ^ Hardy & Walker 2002, pg. 176, Definition 67
  3. ^ Fraleigh 1976, pg. 10
  4. ^ Hall 1959, pg. 1
  5. ^ George A. Grätzer (2008). Universal Algebra (2nd ed.). Springer Science & Business Media. Chapter 2. Partial algebras. ISBN 978-0-387-77487-9.

References

  • Fraleigh, John B. (1976), A First Course in Abstract Algebra (2nd ed.), Reading: Addison-Wesley, ISBN 0-201-01984-1
  • Hall, Marshall Jr. (1959), The Theory of Groups, New York: Macmillan
  • Hardy, Darel W.; Walker, Carol L. (2002), Applied Algebra: Codes, Ciphers and Discrete Algorithms, Upper Saddle River, NJ: Prentice-Hall, ISBN 0-13-067464-8
  • Rotman, Joseph J. (1973), The Theory of Groups: An Introduction (2nd ed.), Boston: Allyn and Bacon

External links

Read other information related to :Binary operation/

Binary Binary number Binary clock Binary star Binary tree Binary operation Binary file Binary code X-ray binary Fat binary Binary system Binary XML Binary option Binary asteroid Binary pulsar Binary prefix Binary data Gender binary Binary form Binary translation Binary phase Universal binary Serial binary adder Contact binary Binary angular measurement Transfer DNA binary system Binary regression Binary opposition Binary chemical weapon Binary search tree Binary-code compatibility Binary cycle Invariant of a binary form Non-binary gender Binary blob Binary-safe Binary classification Binary rec…

ompiler Binary compounds of hydrogen Binary search algorithm Camcon binary actuator Multiplicative binary search Binary image List of binary codes Application binary interface Non-binary characters in fiction Binary heap Random binary tree Binary economics Finger binary Habitability of binary star systems Discrimination against non-binary people Binary GCD algorithm Binary black hole Binary decision diagram Binary betting Interacting binary star Self-balancing binary search tree Binary space partitioning Binary relation Binary alphabet Contact binary (small Solar System body) Binary Golay code Binary integer decimal Banc De Binary Binary combinatory logic Binary splitting Binary function Binary-coded decimal Binary Format Description language XML-binary Optimized Packaging Redundant binary representation Post common envelope binary Binary vector Binary Finary Catalogue of Spectroscopic Binary Orbits Binary quadratic form Binary Land Non-binary flag Binary logic Bibi-binary Binary trigger Binary explosive Binary Star (hip hop group) Be/X-ray binary Binary cam Offset binary Black–white binary Timeline of binary prefixes Left-child right-sibling binary tree Binary Code (band) Binary

Kembali kehalaman sebelumnya