Well-formed formula

In mathematical logic, propositional logic and predicate logic, a well-formed formula, abbreviated WFF or wff, often simply formula, is a finite sequence of symbols from a given alphabet that is part of a formal language.[1]

The abbreviation wff is pronounced "woof", or sometimes "wiff", "weff", or "whiff". [12]

A formal language can be identified with the set of formulas in the language. A formula is a syntactic object that can be given a semantic meaning by means of an interpretation. Two key uses of formulas are in propositional logic and predicate logic.

Introduction

A key use of formulas is in propositional logic and predicate logic such as first-order logic. In those contexts, a formula is a string of symbols φ for which it makes sense to ask "is φ true?", once any free variables in φ have been instantiated. In formal logic, proofs can be represented by sequences of formulas with certain properties, and the final formula in the sequence is what is proven.

Although the term "formula" may be used for written marks (for instance, on a piece of paper or chalkboard), it is more precisely understood as the sequence of symbols being expressed, with the marks being a token instance of formula. This distinction between the vague notion of "property" and the inductively-defined notion of well-formed formula has roots in Weyl's 1910 paper "Uber die Definitionen der mathematischen Grundbegriffe".[13] Thus the same formula may be written more than once, and a formula might in principle be so long that it cannot be written at all within the physical universe.

Formulas themselves are syntactic objects. They are given meanings by interpretations. For example, in a propositional formula, each propositional variable may be interpreted as a concrete proposition, so that the overall formula expresses a relationship between these propositions. A formula need not be interpreted, however, to be considered solely as a formula.

Propositional calculus

The formulas of propositional calculus, also called propositional formulas,[14] are expressions such as . Their definition begins with the arbitrary choice of a set V of propositional variables. The alphabet consists of the letters in V along with the symbols for the propositional connectives and parentheses "(" and ")", all of which are assumed to not be in V. The formulas will be certain expressions (that is, strings of symbols) over this alphabet.

The formulas are inductively defined as follows:

  • Each propositional variable is, on its own, a formula.
  • If φ is a formula, then ¬φ is a formula.
  • If φ and ψ are formulas, and • is any binary connective, then ( φ • ψ) is a formula. Here • could be (but is not limited to) the usual operators ∨, ∧, →, or ↔.

This definition can also be written as a formal grammar in Backus–Naur form, provided the set of variables is finite:

<alpha set> ::= p | q | r | s | t | u | ... (the arbitrary finite set of propositional variables)
<form> ::= <alpha set> | ¬<form> | (<form><form>) | (<form><form>) | (<form><form>) | (<form><form>)

Using this grammar, the sequence of symbols

(((pq) ∧ (rs)) ∨ (¬q ∧ ¬s))

is a formula, because it is grammatically correct. The sequence of symbols

((pq)→(qq))p))

is not a formula, because it does not conform to the grammar.

A complex formula may be difficult to read, owing to, for example, the proliferation of parentheses. To alleviate this last phenomenon, precedence rules (akin to the standard mathematical order of operations) are assumed among the operators, making some operators more binding than others. For example, assuming the precedence (from most binding to least binding) 1. ¬   2. →  3. ∧  4. ∨. Then the formula

(((pq) ∧ (rs)) ∨ (¬q ∧ ¬s))

may be abbreviated as

pqrs ∨ ¬q ∧ ¬s

This is, however, only a convention used to simplify the written representation of a formula. If the precedence was assumed, for example, to be left-right associative, in following order: 1. ¬   2. ∧  3. ∨  4. →, then the same formula above (without parentheses) would be rewritten as

(p → (qr)) → (s ∨ (¬q ∧ ¬s))

Predicate logic

The definition of a formula in first-order logic is relative to the signature of the theory at hand. This signature specifies the constant symbols, predicate symbols, and function symbols of the theory at hand, along with the arities of the function and predicate symbols.

The definition of a formula comes in several parts. First, the set of terms is defined recursively. Terms, informally, are expressions that represent objects from the domain of discourse.

  1. Any variable is a term.
  2. Any constant symbol from the signature is a term
  3. an expression of the form f(t1,...,tn), where f is an n-ary function symbol, and t1,...,tn are terms, is again a term.

The next step is to define the atomic formulas.

  1. If t1 and t2 are terms then t1=t2 is an atomic formula
  2. If R is an n-ary predicate symbol, and t1,...,tn are terms, then R(t1,...,tn) is an atomic formula

Finally, the set of formulas is defined to be the smallest set containing the set of atomic formulas such that the following holds:

  1. is a formula when is a formula
  2. and are formulas when and are formulas;
  3. is a formula when is a variable and is a formula;
  4. is a formula when is a variable and is a formula (alternatively, could be defined as an abbreviation for ).

If a formula has no occurrences of or , for any variable , then it is called quantifier-free. An existential formula is a formula starting with a sequence of existential quantification followed by a quantifier-free formula.

Atomic and open formulas

An atomic formula is a formula that contains no logical connectives nor quantifiers, or equivalently a formula that has no strict subformulas. The precise form of atomic formulas depends on the formal system under consideration; for propositional logic, for example, the atomic formulas are the propositional variables. For predicate logic, the atoms are predicate symbols together with their arguments, each argument being a term.

According to some terminology, an open formula is formed by combining atomic formulas using only logical connectives, to the exclusion of quantifiers.[15] This is not to be confused with a formula which is not closed.

Closed formulas

A closed formula, also ground formula or sentence, is a formula in which there are no free occurrences of any variable. If A is a formula of a first-order language in which the variables v1, …, vn have free occurrences, then A preceded by v1 ⋯ ∀vn is a universal closure of A.

Properties applicable to formulas

  • A formula A in a language is valid if it is true for every interpretation of .
  • A formula A in a language is satisfiable if it is true for some interpretation of .
  • A formula A of the language of arithmetic is decidable if it represents a decidable set, i.e. if there is an effective method which, given a substitution of the free variables of A, says that either the resulting instance of A is provable or its negation is.

Usage of the terminology

In earlier works on mathematical logic (e.g. by Church[16]), formulas referred to any strings of symbols and among these strings, well-formed formulas were the strings that followed the formation rules of (correct) formulas.

Several authors simply say formula.[17][18][19][20] Modern usages (especially in the context of computer science with mathematical software such as model checkers, automated theorem provers, interactive theorem provers) tend to retain of the notion of formula only the algebraic concept and to leave the question of well-formedness, i.e. of the concrete string representation of formulas (using this or that symbol for connectives and quantifiers, using this or that parenthesizing convention, using Polish or infix notation, etc.) as a mere notational problem.

The expression "well-formed formulas" (WFF) also crept into popular culture. WFF is part of an esoteric pun used in the name of the academic game "WFF 'N PROOF: The Game of Modern Logic", by Layman Allen,[21] developed while he was at Yale Law School (he was later a professor at the University of Michigan). The suite of games is designed to teach the principles of symbolic logic to children (in Polish notation).[22] Its name is an echo of whiffenpoof, a nonsense word used as a cheer at Yale University made popular in The Whiffenpoof Song and The Whiffenpoofs.[23]

See also

Notes

  1. ^ Formulas are a standard topic in introductory logic, and are covered by all introductory textbooks, including Enderton (2001), Gamut (1990), and Kleene (1967)
  2. ^ Gensler, Harry (2002-09-11). Introduction to Logic. Routledge. p. 35. ISBN 978-1-134-58880-0.
  3. ^ Hall, Cordelia; O'Donnell, John (2013-04-17). Discrete Mathematics Using a Computer. Springer Science & Business Media. p. 44. ISBN 978-1-4471-3657-6.
  4. ^ Agler, David W. (2013). Symbolic Logic: Syntax, Semantics, and Proof. Rowman & Littlefield. p. 41. ISBN 978-1-4422-1742-3.
  5. ^ Simpson, R. L. (2008-03-17). Essentials of Symbolic Logic - Third Edition. Broadview Press. p. 14. ISBN 978-1-77048-495-5.
  6. ^ Laderoute, Karl (2022-10-24). A Pocket Guide to Formal Logic. Broadview Press. p. 59. ISBN 978-1-77048-868-7.
  7. ^ Maurer, Stephen B.; Ralston, Anthony (2005-01-21). Discrete Algorithmic Mathematics, Third Edition. CRC Press. p. 625. ISBN 978-1-56881-166-6.
  8. ^ Martin, Robert M. (2002-05-06). The Philosopher's Dictionary - Third Edition. Broadview Press. p. 323. ISBN 978-1-77048-215-9.
  9. ^ Date, Christopher (2008-10-14). The Relational Database Dictionary, Extended Edition. Apress. p. 211. ISBN 978-1-4302-1042-9.
  10. ^ Date, C. J. (2015-12-21). The New Relational Database Dictionary: Terms, Concepts, and Examples. "O'Reilly Media, Inc.". p. 241. ISBN 978-1-4919-5171-2.
  11. ^ Simpson, R. L. (1998-12-10). Essentials of Symbolic Logic. Broadview Press. p. 12. ISBN 978-1-55111-250-3.
  12. ^ All sources supported "woof". The sources cited for "wiff", "weff", and "whiff" gave these pronunciations as alternatives to "woof". The Gensler source gives "wood" and "woofer" as examples of how to pronounce the vowel in "woof".
  13. ^ W. Dean, S. Walsh, The Prehistory of the Subsystems of Second-order Arithmetic (2016), p.6
  14. ^ First-order logic and automated theorem proving, Melvin Fitting, Springer, 1996 [1]
  15. ^ Handbook of the history of logic, (Vol 5, Logic from Russell to Church), Tarski's logic by Keith Simmons, D. Gabbay and J. Woods Eds, p568 [2].
  16. ^ Alonzo Church, [1996] (1944), Introduction to mathematical logic, page 49
  17. ^ Hilbert, David; Ackermann, Wilhelm (1950) [1937], Principles of Mathematical Logic, New York: Chelsea
  18. ^ Hodges, Wilfrid (1997), A shorter model theory, Cambridge University Press, ISBN 978-0-521-58713-6
  19. ^ Barwise, Jon, ed. (1982), Handbook of Mathematical Logic, Studies in Logic and the Foundations of Mathematics, Amsterdam: North-Holland, ISBN 978-0-444-86388-1
  20. ^ Cori, Rene; Lascar, Daniel (2000), Mathematical Logic: A Course with Exercises, Oxford University Press, ISBN 978-0-19-850048-3
  21. ^ Ehrenburg 2002
  22. ^ More technically, propositional logic using the Fitch-style calculus.
  23. ^ Allen (1965) acknowledges the pun.

References

Read other articles:

Tulsa Roughnecks FC 2017 soccer seasonTulsa Roughnecks FC2017 seasonOwnerDaniel & Jeff HubbardHead coachDavid VaudreuilStadiumONEOK FieldUSL7th, WesternUSL CupConference QuarterfinalsU.S. Open CupFourth roundTop goalscorerIan Svantesson (6)Highest home attendanceLeague/All:5,647 (7/22 vs. PHX)Lowest home attendanceLeague:3,015 (4/1 vs. RGV)All:885 (5/17 vs. OKC U23, USOC)Biggest winTUL 4–0 OC (5/13)Biggest defeatRNO 4–0 TUL (5/24) Home colors Away colors Third colors ← 2016...

 

Esta página cita fontes, mas que não cobrem todo o conteúdo. Ajude a inserir referências. Conteúdo não verificável pode ser removido.—Encontre fontes: ABW  • CAPES  • Google (N • L • A) (Junho de 2017) Vista de um dos salões do Cannon House Building O Cannon House Office Building é um dos prédios em Washington, D.C. que abrigam os escritórios da Câmara dos Representantes dos Estados Unidos, sendo também o mais antigo...

 

Amnéville Amnéville (Frankreich) Staat Frankreich Region Grand Est Département (Nr.) Moselle (57) Arrondissement Metz Kanton Rombas Gemeindeverband Pays Orne Moselle Koordinaten 49° 16′ N, 6° 9′ O49.2608333333336.1419444444444Koordinaten: 49° 16′ N, 6° 9′ O Höhe 157–366 m Fläche 10,46 km² Einwohner 10.668 (1. Januar 2020) Bevölkerungsdichte 1.020 Einw./km² Postleitzahl 57360 INSEE-Code 57019 Website Amnéville Rathau...

العلاقات الفرنسية الكولومبية فرنسا كولومبيا   فرنسا   كولومبيا تعديل مصدري - تعديل   العلاقات الفرنسية الكولومبية هي العلاقات الثنائية التي تجمع بين فرنسا وكولومبيا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه المقا...

 

Film by Andrew Semans ResurrectionTheatrical release posterDirected byAndrew SemansWritten byAndrew SemansProduced by Tory Lenosky Alex Scharfman Drew Houpt Lars Knudsen Tim Headington Lia Buman Starring Rebecca Hall Grace Kaufman Michael Esper Tim Roth CinematographyWyatt GarfieldEdited byRon DulinMusic byJim WilliamsProductioncompanies Tango Entertainment Secret Engine Square Peg Rosetory Distributed by IFC Films Shudder Release dates January 22, 2022 (2022-01-22) (Sundan...

 

Model railroad scale of 1:87 HO (H0)HO scale (1:87) model of a center cab switcher made by Bachmann, shown with a pencil for size comparison.Scale3.5 mm to 1 ft (305 mm)Scale ratio1:87Standard(s) NEM 010 NMRA S-1.2 Model gauge16.5 mm (0.65 in)Prototype gaugeStandard gauge HO or H0 is a rail transport modelling scale using a 1:87 scale (3.5 mm to 1 foot). It is the most popular scale of model railway in the world.[1][2] The rails are spaced 16...

Bharatá es un mítico emperador de la literatura clásica de la India. Pintura de Raja Ravi Varma que representa a Bharatá cuando era niño. La ninfa Ménaka seduce al sabio célibe Vishuamitra. Pintura de Raja Ravi Varma. Shakuntalá. Pintura de Raja Ravi Varma. Mapa de la India épica. Según la mitología hinduista, fue el primero en conquistar toda la India, uniéndola en una sola entidad (que en honor a él actualmente se denomina Bharata Varsa). De acuerdo con algunos Puranas, el tér...

 

عضلة نصف غشائية   تفاصيل نوع من كيان تشريحي معين  [لغات أخرى]‏  جزء من عضلات باطن الركبة،  وحيز خلفي للفخذ  ترمينولوجيا أناتوميكا 04.7.02.036   FMA 22438  UBERON ID 0001381  [عدل في ويكي بيانات ] تعديل مصدري - تعديل   العَضلة نِصف الغِشائية[1] (باللاتينية: Musculu...

 

Beauty contest Miss TahitiTypeBeauty pageantHeadquartersFrench Polynesia, FranceMembership Miss FranceOfficial language FrenchRegional directorLeiana FaugeratWebsitewww.misstahiti.com Miss Tahiti is a French Polynesian beauty pageant which selects a representative for the Miss France national competition from the overseas country of French Polynesia. Despite its name, women from all of French Polynesia are eligible to compete, not solely those from Tahiti. Miss Tahiti has been held annually s...

Dieser Artikel bedarf einer grundsätzlichen Überarbeitung: Der Artikel (die Liste) weißt massive Mängel auf. So wird textlich ziemlich konsequent die Zeit der DDR mit der Zeit nach der Wiedervereinigung verwoben. Sachverhalte werden irgendwo behandelt - Akademien mal unter Akademien, mal unter den entsprechenden Fachrichtungen. Habe ein wenig verbessert, aber das zieht sich durch den gesamten Textteil. Bitte hilf mit, ihn zu verbessern, und entferne anschließend diese Markierung. Die...

 

BandengRentang fosil: 100–0 jtyl PreЄ Є O S D C P T J K Pg N Zaman kapur awal–sekarang Status konservasi Risiko Rendah (IUCN 3.1)[1] Klasifikasi ilmiah Domain: Eukaryota Kerajaan: Animalia Filum: Chordata Kelas: Actinopterygii Ordo: Gonorynchiformes Famili: Chanidae Genus: ChanosLacépède, 1803 Spesies: Chanos chanosForsskål, 1775 Sinonim Butirinus argenteus Jerdon, 1849 Butirinus maderaspatensis Jerdon, 1849 Chanos arabicus Lacepède, 1803 Chanos chloropterus Valenc...

 

Comptoir du matériel pour les travaux publics, les mines et l’industrie am Hafen des Stadtteils L’Agha in Algier Messestand des Kontors für öffentliche Arbeiten, Bergbau und Industrieausrüstung in Algier, 1921 Das Comptoir du matériel pour les travaux publics, les mines et l’industrie betrieb als Büro für öffentliche Arbeiten, Bergbau und Industrieausrüstung die Handelsniederlassungen der auf Feldbahnen spezialisierten Schienenfahrzeug- und Eisenbahnausrüstungshersteller Decau...

Computer file format DjVuFilename extensions .djvu, .djvInternet media type image/vnd.djvu, image/x-djvuMagic numberAT&TDeveloped byAT&T Labs – ResearchInitial release1998; 25 years ago (1998)Latest releaseVersion 26[1]April 2005; 18 years ago (2005-04) Type of formatImage file formatsContained byInterchange File FormatOpen format?Yes DjVu (/ˌdeɪʒɑːˈvuː/ DAY-zhah-VOO, like French déjà vu[2]) is a comput...

 

2015 American supernatural horror film This article is about the 2015 film. For the wooden scaffold used for hangings, see Gallows. For other uses, see Gallows (disambiguation). The GallowsTheatrical release posterDirected by Chris Lofing Travis Cluff Written by Chris Lofing Travis Cluff Produced by Jason Blum Guymon Casady Dean Schnider Benjamin Forkner Chris Lofing Travis Cluff Starring Reese Mishler Pfeifer Brown Ryan Shoos Cassidy Gifford CinematographyEdd LukasEdited byChris LofingMusic ...

 

Опис файлу Опис Обкладинка альбому Moment of Glory гурту Scorpions Джерело Англійська Вікіпедія Час створення 2000 Автор зображення Виконавець та / або лейбл Ліцензія див. нижче Обґрунтування добропорядного використання для статті «Moment of Glory» [?] Мета використання Проілюструв...

مرحبًا بكم في بوَّابة الألوان   اللَّون.. هو صفة الجسم من السواد والبياض و الحمرة وغيره، ولَوْنُ كلِّ شيء: ما فَصَلَ بينه وبين غيره هو ما نراه عندما تقوم الملونات بتعديل الضوء فيزيائيا بحيث تراه العين البشرية (تسمى عملية الاستجابة) ويترجم في الدماغ (تسمى عملية الإحساس الت...

 

Disambiguazione – Se stai cercando altri significati, vedi Kashmir (disambigua). Kashmir(EN) Kashmir(HI) कश्मीर(UR) کشمیر(ZH) 克什米尔 Mappa della regione del Kashmir. In verde, il territorio rientrante nel Pakistan; in arancione, quello in India. Stati Pakistan India Cina RegioniAksai ChinJammu e KashmirAzad KashmirGilgit-Baltistan TerritorioAsia centro-orientale Le regioni contese del Kashmir. In rosso, la linea di controllo tra i tre Paesi. Kashmir Coo...

 

For other uses, see 54th Division. 54th Infantry DivisionFounded01 October 1966; 57 years ago (01 October 1966)Country IndiaBranch Indian ArmyTypeInfantryRoleAmphibious warfareSizeDivisionPart ofXXI CorpsGarrison/HQSecunderabadNickname(s)Bison DivisionThambi DivisionBash On Regardless DivisionMotto(s)Bash On RegardlessMascot(s)The Gaur (The Indian Bison)EngagementsIndo-Pakistani War of 1971Operation PawanOperation Blue StarKargil WarOperation ParakramCommandersCurr...

Royal Navy officer (1653–1724) This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (April 2009) (Learn how and when to remove this template message) Captain Seth JermyBorn(1653-09-02)2 September 1653Whitechapel, MiddlesexDied3 September 1724(1724-09-03) (aged 71)Stratford, MiddlesexAllegianceUnited Kingdom ofGreat Britain and IrelandService/branchRoyal Navy...

 

Consonantal sound represented by ⟨b̪⟩ in IPA Voiced labiodental plosiveb̪ȸIPA Number102 408EncodingEntity (decimal)&#98;​&#810;Unicode (hex)U+0062 U+032AX-SAMPAb_dBraille The voiced labiodental plosive or stop is a consonant sound produced like a [b], but with the lower lip contacting the upper teeth, as in [v]. This can be represented in the IPA as ⟨b̪⟩. A separate symbol that is sometimes seen, especially in Bantu linguistics, but not recognized b...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!