Lucas number

The Lucas spiral, made with quarter-arcs, is a good approximation of the golden spiral when its terms are large. However, when its terms become very small, the arc's radius decreases rapidly from 3 to 1 then increases from 1 to 2.

The Lucas sequence is an integer sequence named after the mathematician François Édouard Anatole Lucas (1842–1891), who studied both that sequence and the closely related Fibonacci sequence. Individual numbers in the Lucas sequence are known as Lucas numbers. Lucas numbers and Fibonacci numbers form complementary instances of Lucas sequences.

The Lucas sequence has the same recursive relationship as the Fibonacci sequence, where each term is the sum of the two previous terms, but with different starting values.[1] This produces a sequence where the ratios of successive terms approach the golden ratio, and in fact the terms themselves are roundings of integer powers of the golden ratio.[2] The sequence also has a variety of relationships with the Fibonacci numbers, like the fact that adding any two Fibonacci numbers two terms apart in the Fibonacci sequence results in the Lucas number in between.[3]

The first few Lucas numbers are

2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843, 1364, 2207, 3571, 5778, 9349, ... . (sequence A000032 in the OEIS)

which coincides for example with the number of independent vertex sets for cyclic graphs of length .[1]

Definition

As with the Fibonacci numbers, each Lucas number is defined to be the sum of its two immediately previous terms, thereby forming a Fibonacci integer sequence. The first two Lucas numbers are and , which differs from the first two Fibonacci numbers and . Though closely related in definition, Lucas and Fibonacci numbers exhibit distinct properties.

The Lucas numbers may thus be defined as follows:

(where n belongs to the natural numbers)

All Fibonacci-like integer sequences appear in shifted form as a row of the Wythoff array; the Fibonacci sequence itself is the first row and the Lucas sequence is the second row. Also like all Fibonacci-like integer sequences, the ratio between two consecutive Lucas numbers converges to the golden ratio.

Extension to negative integers

Using , one can extend the Lucas numbers to negative integers to obtain a doubly infinite sequence:

..., −11, 7, −4, 3, −1, 2, 1, 3, 4, 7, 11, ... (terms for are shown).

The formula for terms with negative indices in this sequence is

Relationship to Fibonacci numbers

The first identity expressed visually

The Lucas numbers are related to the Fibonacci numbers by many identities. Among these are the following:

  • , so .
  • ; in particular, , so .

Their closed formula is given as:

where is the golden ratio. Alternatively, as for the magnitude of the term is less than 1/2, is the closest integer to , and may also be expressed as the integer part (ie. floor function) of , also written as .

Combining the above with Binet's formula,

a formula for is obtained:

For integers n ≥ 2, we also get:

with remainder R satisfying

.

Lucas identities

Many of the Fibonacci identities have parallels in Lucas numbers. For example, the Cassini identity becomes

Also

where .

where except for .

For example if n is odd, and

Checking, , and

Generating function

Let

be the generating function of the Lucas numbers. By a direct computation,

which can be rearranged as

gives the generating function for the negative indexed Lucas numbers, , and

satisfies the functional equation

As the generating function for the Fibonacci numbers is given by

we have

which proves that

and

proves that

The partial fraction decomposition is given by

where is the golden ratio and is its conjugate.

This can be used to prove the generating function, as

Congruence relations

If is a Fibonacci number then no Lucas number is divisible by .

is congruent to 1 modulo if is prime, but some composite values of also have this property. These are the Fibonacci pseudoprimes.

is congruent to 0 modulo 5.

Lucas primes

A Lucas prime is a Lucas number that is prime. The first few Lucas primes are

2, 3, 7, 11, 29, 47, 199, 521, 2207, 3571, 9349, 3010349, 54018521, 370248451, 6643838879, ... (sequence A005479 in the OEIS).

The indices of these primes are (for example, L4 = 7)

0, 2, 4, 5, 7, 8, 11, 13, 16, 17, 19, 31, 37, 41, 47, 53, 61, 71, 79, 113, 313, 353, 503, 613, 617, 863, 1097, 1361, 4787, 4793, 5851, 7741, 8467, ... (sequence A001606 in the OEIS).

As of September 2015, the largest confirmed Lucas prime is L148091, which has 30950 decimal digits.[4] As of August 2022, the largest known Lucas probable prime is L5466311, with 1,142,392 decimal digits.[5]

If Ln is prime then n is 0, prime, or a power of 2.[6] L2m is prime for m = 1, 2, 3, and 4 and no other known values of m.

Lucas polynomials

In the same way as Fibonacci polynomials are derived from the Fibonacci numbers, the Lucas polynomials are a polynomial sequence derived from the Lucas numbers.

Continued fractions for powers of the golden ratio

Close rational approximations for powers of the golden ratio can be obtained from their continued fractions.

For positive integers n, the continued fractions are:

.

For example:

is the limit of

with the error in each term being about 1% of the error in the previous term; and

is the limit of

with the error in each term being about 0.3% that of the second previous term.

Applications

Lucas numbers are the second most common pattern in sunflowers after Fibonacci numbers, when clockwise and counter-clockwise spirals are counted, according to an analysis of 657 sunflowers in 2016.[7]

See also

References

  1. ^ a b Weisstein, Eric W. "Lucas Number". mathworld.wolfram.com. Retrieved 2020-08-11.
  2. ^ Parker, Matt (2014). "13". Things to Make and Do in the Fourth Dimension. Farrar, Straus and Giroux. p. 284. ISBN 978-0-374-53563-6.
  3. ^ Parker, Matt (2014). "13". Things to Make and Do in the Fourth Dimension. Farrar, Straus and Giroux. p. 282. ISBN 978-0-374-53563-6.
  4. ^ "The Top Twenty: Lucas Number". primes.utm.edu. Retrieved 6 January 2022.
  5. ^ "Henri & Renaud Lifchitz's PRP Top - Search by form". www.primenumbers.net. Retrieved 6 January 2022.
  6. ^ Chris Caldwell, "The Prime Glossary: Lucas prime" from The Prime Pages.
  7. ^ Swinton, Jonathan; Ochu, Erinma; null, null (2016). "Novel Fibonacci and non-Fibonacci structure in the sunflower: results of a citizen science experiment". Royal Society Open Science. 3 (5): 160091. Bibcode:2016RSOS....360091S. doi:10.1098/rsos.160091. PMC 4892450. PMID 27293788.

Read other articles:

Palacio de Queluz Monumento nacional de Portugal La fachada principal y Cuerpo Central del Palacio de QueluzLocalizaciónPaís PortugalLocalidad QueluzUbicación Queluz e BelasCoordenadas 38°45′02″N 9°15′30″O / 38.750446, -9.258224Información generalUsos Museo y residencia de jefes de Estado extranjeros.Estilo Barroco, Rococó, NeoclásicoInicio 1747Finalización 1786Remodelación 1934-1940Propietario Estado portugués (desde 1908), anteriormente: Casa de Braganza (...

 

Moose Wilson Road Plaats in de Verenigde Staten Vlag van Verenigde Staten Locatie van Moose Wilson Road in Wyoming Locatie van Wyoming in de VS Situering County Teton County Type plaats Census-designated place Staat Wyoming Coördinaten 43° 32′ NB, 110° 51′ WL Algemeen Oppervlakte 17,4 km² - land 16,9 km² - water 0,5 km² Inwoners (2000) 1.439 Hoogte 1.888 m Overig ZIP-code(s) 83014 FIPS-code 54402 Portaal    Verenigde Staten Moose Wilson Road is een plaats (census-d...

 

Изображение было скопировано с wikipedia:en. Оригинальное описание содержало: http://www.cannibalcorpse.net/ Це зображення є обкладинкою музичного альбому або синглу. Найімовірніше, авторськими правами на обкладинку володіє видавець альбому (синглу) або виконавець (виконавці). Ця робота є н

  لمعانٍ أخرى، طالع هيرويوكي كوباياشي (توضيح). هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (يوليو 2017) هيرويوكي كوباياشي (باليابانية: 小林宏之)‏    معلومات شخصية الميلاد 18 أبريل 1980 (43 سنة)  سابورو  الطو...

 

 Nota: Para outros significados, veja Sexo (desambiguação). Este artigo ou secção cita fontes, mas que não cobrem todo o conteúdo. Ajude a inserir referências. Conteúdo não verificável pode ser removido.—Encontre fontes: ABW  • CAPES  • Google (N • L • A) (Janeiro de 2011) As referências deste artigo necessitam de formatação. Por favor, utilize fontes apropriadas contendo título, autor e data para que o verbete...

 

American mixed martial arts fighter Nate MarquardtBornNathan Joel Marquardt (1979-04-20) April 20, 1979 (age 44)Lander, Wyoming, United StatesOther namesThe GreatNationalityAmericanHeight6 ft 0 in (1.83 m)[1][2]Weight185 lb (84 kg; 13.2 st)DivisionLightweight (1999) Middleweight (2000–2011, 2014–2017) Welterweight (2012–2014)Reach74 in (190 cm)[3]StylePankration, Brazilian Jiu-Jitsu, Jujutsu, Wing Chun Kung Fu, Freesty...

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada November 2022. František KreuzmannFrantišek KreuzmannLahir(1895-10-11)11 Oktober 1895Pilsen, Bohemia, Austria-Hungaria (kini Plzeň, Republik Ceko)Meninggal28 Desember 1960(1960-12-28) (umur 65)Praha, Cekoslowakia (kini Republik Ceko)PekerjaanPemeranTahun...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (نوفمبر 2022) أرفيند كيجريوال (بالهندية: अरविंद केजरीवाल)‏    مناصب [1]   تولى المنصب8 ديسمبر 2013  [2]   تولى المنصب14 فبراير 2015  معلومات شخصية ال...

 

Венсан Сімон Особисті дані Народження 28 вересня 1983(1983-09-28) (40 років)   Французька Полінезія Зріст 176 см Громадянство Таїті Франція Позиція захисник Інформація про клуб Поточний клуб «Дрегон» Професіональні клуби* Роки Клуб І (г) 2003–2011 «Пірае»  ? (?) 2011– «Дрегон»...

Mexican footballer (born 1993) Martín Zúñiga Martín Zúñiga playing for Mexico U20 in 2012.Personal informationFull name Martín Eduardo Zúñiga Barrios[1]Date of birth (1993-04-14) 14 April 1993 (age 30)Place of birth Tapachula, Chiapas, MexicoHeight 1.87 m (6 ft 2 in)[1]Position(s) ForwardTeam informationCurrent team TepatitlánNumber 28Youth career2008–2012 AméricaSenior career*Years Team Apps (Gls)2012–2017 América 22 (0)2013–2014 → Chia...

 

Active military training mission of the European Union This article is about EU's military assistance (e.g. training) in support of Ukraine. For the EU's mission providing aid to Ukraine's civilian security sector, denoted EUAM Ukraine, see European Union Advisory Mission Ukraine. European Union Military Assistance Mission in support of Ukraine (EUMAM Ukraine)Part of the foreign aid to Ukraine in response to the Russian invasion of UkraineOperational scopeEUMAM Ukraine will provide individual...

 

American basketball player Kyle Allman Jr.Allman with Paris Basketball in 2021Beşiktaş EmlakjetPositionShooting guardLeagueBasketbol Süper Ligi EuroCupPersonal informationBorn (1997-09-02) September 2, 1997 (age 26)Brooklyn, New YorkNationalityAmericanListed height6 ft 5 in (1.96 m)Listed weight195 lb (88 kg)Career informationHigh school St. John's Prep(Astoria, New York) Construction Trades(Ozone Park, New York) CollegeCal State Fullerton (2015–2019)NBA dra...

Đối với các định nghĩa khác, xem Nguyễn Hữu Độ.Nguyễn Hữu Độ 阮有度Tên chữHi BùiTên hiệuTông KhêThông tin cá nhânSinhNgày sinhtháng 4, 1813Nơi sinhThanh Hóa MấtNgày mất18 tháng 12, 1888Nơi mấtHà Nội An nghỉHuếGiới tínhnamGia quyếnHậu duệNguyễn Hữu Thị Nhàn, Nguyễn Hữu Thị Nga, Nguyễn Hữu Thị Uyển, Nguyễn Hữu Tý, Nguyễn Hữu Lữ, Nguyễn Hữu Khâm Nghề nghiệpquan lạiQuốc tịchnhà Ngu...

 

KhorazimכורזיםSinagoge kuno di ChorazimKhorazim di timur laut IsraelLokasiDistrik Utara, IsraelWilayahDataran Korazim, GalileaKoordinat32°54′41″N 35°33′50″E / 32.91139°N 35.56389°E / 32.91139; 35.56389Koordinat: 32°54′41″N 35°33′50″E / 32.91139°N 35.56389°E / 32.91139; 35.56389JenisPemukimanCatatan situsKondisiReruntuhan Khorazim (/koʊˈreɪzɪn/; Ibrani: כורזים, Korazim; juga Karraza, Kh. Karazeh, Choriz...

 

Pandemi koronavirus 2020 di CekoKasus terkonfirmasi per juta penduduk menurut wilayahPenyakitCOVID-19Galur virusSARS-CoV-2LokasiCekoKasus pertamaTidak diketahuiTanggal kemunculan1 Maret 2020(3 tahun, 8 bulan, 3 minggu dan 6 hari lalu)AsalWuhan, Hubei, TiongkokKasus terkonfirmasi7.581[1]Kasus sembuh3.120[1]Kematian227[1]Situs web resmionemocneni-aktualne.mzcr.cz/covid-19 Pandemi koronavirus 2019–2020 menimbulkan tiga kasus terkonfirmasi pertama di ...

300-й гвардейский парашютно-десантный ордена Кутузова полк Вооружённые силы ВС СССР Род войск (сил) ВДВ Вид формирования ВДВ Награды Районы боевых действий Великая Отечественная война Свирско-Петрозаводская операция, Венская наступательная операция Карабахский конфлик...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Mountain Xpress – news · newspapers · books · scholar · JSTOR (July 2023) (Learn how and when to remove this template message) Mountain XpressTypeAlternative weeklyFormatTabloidPublisherJeff FobesManaging editorThomas CalderLanguageEnglishHeadquarters2 Wall St....

 

1974 self-coup in Upper Volta 1974 Upper Voltan coup d'étatDate8 February 1974LocationOuagadougou, Republic of Upper VoltaResult Coup attempt succeedsBelligerents Upper Volta RDA Upper Voltan Armed ForcesCommanders and leaders Gérard Kango OuédraogoPrime Minister of Upper Volta Joseph OuédraogoPresident of the National Assembly Gen. Sangoulé LamizanaPresident of Upper Volta The 1974 Upper Voltan coup d'état was a bloodless military coup which took place in the Republic of Upper Volta on...

Indian book publishing company based in Kerala This article contains content that is written like an advertisement. Please help improve it by removing promotional content and inappropriate external links, and by adding encyclopedic content written from a neutral point of view. (February 2022) (Learn how and when to remove this template message) DC BooksFounded1974; 49 years ago (1974)FounderDominic Chacko KizhakemuriCountry of originIndiaHeadquarters locationKottayam, Kerala...

 

Energi kinetikEnergi kinetik dari kereta luncur akan maksimum saat berada pada lintasan terendah (dasar).Simbol umumKE, Ek, or TSatuan SIjoule (J)Turunan daribesaran lainnyaEk = ½mv2 Ek = Et+Er Bagian dari seri artikel mengenaiMekanika klasik F → = m a → {\displaystyle {\vec {F}}=m{\vec {a}}} Hukum kedua Newton Sejarah Garis waktu Cabang Benda langit Dinamika Kinematika Kinetika Kontinuum Statika Statistika Terapan Dasar Asas D'Alembert Daya mekanik Energi kinetik potensial Gay...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!