Nontotient

In number theory, a nontotient is a positive integer n which is not a totient number: it is not in the range of Euler's totient function φ, that is, the equation φ(x) = n has no solution x. In other words, n is a nontotient if there is no integer x that has exactly n coprimes below it. All odd numbers are nontotients, except 1, since it has the solutions x = 1 and x = 2. The first few even nontotients are this sequence:

14, 26, 34, 38, 50, 62, 68, 74, 76, 86, 90, 94, 98, 114, 118, 122, 124, 134, 142, 146, 152, 154, 158, 170, 174, 182, 186, 188, 194, 202, 206, 214, 218, 230, 234, 236, 242, 244, 246, 248, 254, 258, 266, 274, 278, 284, 286, 290, 298, ... (sequence A005277 in the OEIS)

The least value of k such that the totient of k is n are (0 if no such k exists) are this sequence:

1, 3, 0, 5, 0, 7, 0, 15, 0, 11, 0, 13, 0, 0, 0, 17, 0, 19, 0, 25, 0, 23, 0, 35, 0, 0, 0, 29, 0, 31, 0, 51, 0, 0, 0, 37, 0, 0, 0, 41, 0, 43, 0, 69, 0, 47, 0, 65, 0, 0, 0, 53, 0, 81, 0, 87, 0, 59, 0, 61, 0, 0, 0, 85, 0, 67, 0, 0, 0, 71, 0, 73, ... (sequence A049283 in the OEIS)

The greatest value of k such that the totient of k is n are (0 if no such k exists) are this sequence:

2, 6, 0, 12, 0, 18, 0, 30, 0, 22, 0, 42, 0, 0, 0, 60, 0, 54, 0, 66, 0, 46, 0, 90, 0, 0, 0, 58, 0, 62, 0, 120, 0, 0, 0, 126, 0, 0, 0, 150, 0, 98, 0, 138, 0, 94, 0, 210, 0, 0, 0, 106, 0, 162, 0, 174, 0, 118, 0, 198, 0, 0, 0, 240, 0, 134, 0, 0, 0, 142, 0, 270, ... (sequence A057635 in the OEIS)

The number of ks such that φ(k) = n are (start with n = 0) are this sequence:

0, 2, 3, 0, 4, 0, 4, 0, 5, 0, 2, 0, 6, 0, 0, 0, 6, 0, 4, 0, 5, 0, 2, 0, 10, 0, 0, 0, 2, 0, 2, 0, 7, 0, 0, 0, 8, 0, 0, 0, 9, 0, 4, 0, 3, 0, 2, 0, 11, 0, 0, 0, 2, 0, 2, 0, 3, 0, 2, 0, 9, 0, 0, 0, 8, 0, 2, 0, 0, 0, 2, 0, 17, ... (sequence A014197 in the OEIS)

Carmichael's conjecture is that there are no 1s in this sequence.

An even nontotient may be one more than a prime number, but never one less, since all numbers below a prime number are, by definition, coprime to it. To put it algebraically, for p prime: φ(p) = p − 1. Also, a pronic number n(n − 1) is certainly not a nontotient if n is prime since φ(p2) = p(p − 1).

If a natural number n is a totient, n · 2k is a totient for all natural numbers k.

There are infinitely many even nontotient numbers: indeed, there are infinitely many distinct primes p (such as 78557 and 271129, see Sierpinski number) such that all numbers of the form 2ap are nontotient, and every odd number has an even multiple which is a nontotient.

n numbers k such that φ(k) = n n numbers k such that φ(k) = n n numbers k such that φ(k) = n n numbers k such that φ(k) = n
1 1, 2 37 73 109
2 3, 4, 6 38 74 110 121, 242
3 39 75 111
4 5, 8, 10, 12 40 41, 55, 75, 82, 88, 100, 110, 132, 150 76 112 113, 145, 226, 232, 290, 348
5 41 77 113
6 7, 9, 14, 18 42 43, 49, 86, 98 78 79, 158 114
7 43 79 115
8 15, 16, 20, 24, 30 44 69, 92, 138 80 123, 164, 165, 176, 200, 220, 246, 264, 300, 330 116 177, 236, 354
9 45 81 117
10 11, 22 46 47, 94 82 83, 166 118
11 47 83 119
12 13, 21, 26, 28, 36, 42 48 65, 104, 105, 112, 130, 140, 144, 156, 168, 180, 210 84 129, 147, 172, 196, 258, 294 120 143, 155, 175, 183, 225, 231, 244, 248, 286, 308, 310, 350, 366, 372, 396, 450, 462
13 49 85 121
14 50 86 122
15 51 87 123
16 17, 32, 34, 40, 48, 60 52 53, 106 88 89, 115, 178, 184, 230, 276 124
17 53 89 125
18 19, 27, 38, 54 54 81, 162 90 126 127, 254
19 55 91 127
20 25, 33, 44, 50, 66 56 87, 116, 174 92 141, 188, 282 128 255, 256, 272, 320, 340, 384, 408, 480, 510
21 57 93 129
22 23, 46 58 59, 118 94 130 131, 262
23 59 95 131
24 35, 39, 45, 52, 56, 70, 72, 78, 84, 90 60 61, 77, 93, 99, 122, 124, 154, 186, 198 96 97, 119, 153, 194, 195, 208, 224, 238, 260, 280, 288, 306, 312, 336, 360, 390, 420 132 161, 201, 207, 268, 322, 402, 414
25 61 97 133
26 62 98 134
27 63 99 135
28 29, 58 64 85, 128, 136, 160, 170, 192, 204, 240 100 101, 125, 202, 250 136 137, 274
29 65 101 137
30 31, 62 66 67, 134 102 103, 206 138 139, 278
31 67 103 139
32 51, 64, 68, 80, 96, 102, 120 68 104 159, 212, 318 140 213, 284, 426
33 69 105 141
34 70 71, 142 106 107, 214 142
35 71 107 143
36 37, 57, 63, 74, 76, 108, 114, 126 72 73, 91, 95, 111, 117, 135, 146, 148, 152, 182, 190, 216, 222, 228, 234, 252, 270 108 109, 133, 171, 189, 218, 266, 324, 342, 378 144 185, 219, 273, 285, 292, 296, 304, 315, 364, 370, 380, 432, 438, 444, 456, 468, 504, 540, 546, 570, 630

References

  • Guy, Richard K. (2004). Unsolved Problems in Number Theory. Problem Books in Mathematics. New York, NY: Springer-Verlag. p. 139. ISBN 0-387-20860-7. Zbl 1058.11001.
  • L. Havelock, A Few Observations on Totient and Cototient Valence from PlanetMath
  • Sándor, Jozsef; Crstici, Borislav (2004). Handbook of number theory II. Dordrecht: Kluwer Academic. p. 230. ISBN 1-4020-2546-7. Zbl 1079.11001.
  • Zhang, Mingzhi (1993). "On nontotients". Journal of Number Theory. 43 (2): 168–172. doi:10.1006/jnth.1993.1014. ISSN 0022-314X. Zbl 0772.11001.

Read other articles:

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Setia Band – berita · surat kabar · buku · cendekiawan · JSTOR SetiaAsalBandung, IndonesiaGenrePop melayupop rockpopTahun aktif2012 - sekarangLabelTrinity Optima Production (2012-2021) MSI Record (2019-2...

 

Scarlett JohanssonScarlett Johansson pada tahun 2019LahirScarlett Ingrid Johansson22 November 1984 (umur 39)Manhattan, New York, Amerika SerikatWarga negaraAmerika SerikatDenmarkPekerjaanAktrispenyanyiTahun aktif1994–sekarangTinggi160 cm (5 ft 3 in)Suami/istriRyan Reynolds ​ ​(m. 2008; c. 2011)​Romain Dauriac ​ ​(m. 2014; c. 2017)​ Colin Jost (bertunangan 2017-sekarang)An...

 

 Nota: Para o desenhista de histórias em quadrinhos, veja Ivo Milazzo. Coordenadas: 38° 13' N 15° 14' E Milazzo    Comuna   Localização MilazzoLocalização de Milazzo na Itália Coordenadas 38° 13' N 15° 14' E Região Sicília Província Messina Características geográficas Área total 24 km² População total 29 792 hab. Densidade 1 241 hab./km² Altitude 1 m Outros dados Comunas limítrofes Barcellona Pozzo di Gotto...

Esta página ou seção foi marcada para revisão devido a incoerências ou dados de confiabilidade duvidosa. Se tem algum conhecimento sobre o tema, por favor, verifique e melhore a coerência e o rigor deste artigo.Considere colocar uma explicação mais detalhada na discussão. Esta página cita fontes, mas que não cobrem todo o conteúdo. Ajude a inserir referências. Conteúdo não verificável pode ser removido.—Encontre fontes: ABW  • CAPES  • Google ...

 

De Sint-Nicolaaskerk in Čečovice. De Sint-Nicolaaskerk (Tsjechisch: Kostel svatého Mikuláše) is een kerk in de gemeente Čečovice in de Tsjechische regio Pilsen. De kerk is gewijd aan de heilige Nicolaas van Myra. De oorsprong van de kerk in gotische stijl ligt in de 14e eeuw. Externe link (cs) Kostel sv. Mikuláše, Čečovice, inclusief foto's

 

Landing gear extenders installed on a Cessna 140. Landing gear extenders are devices used on conventional or tailwheel-equipped aircraft. They move the wheels forward of the landing gear leg by 2-3 inches (5–8 cm).[1] The installation of landing gear extenders is almost always the result of operational experience with an aircraft design that shows a problem with the landing gear – when the brakes are applied heavily the aircraft has a tendency to go up on its nose and strike ...

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (يوليو 2017) نادي الذيد شعار نادي الذيد الاسم الكامل نادي الذيد الثقافي الرياضي تأسس عام 1980 (منذ 43 سنة) الملعب استاد ناد...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Peace Anything Box album – news · newspapers · books · scholar · JSTOR (April 2023) (Learn how and when to remove this template message) 1990 studio album by Anything BoxPeaceStudio album by Anything BoxReleased1990Recorded1989–1990GenreSynth-pop...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Januari 2023. Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Oktober 2022. NOTDAsa...

Logo for the PDC The Washington State Public Disclosure Commission (PDC) is an agency of the Washington state government that regulates candidates, campaigns and lobbyists. It enforces the state's disclosure and campaign finances laws, and provides public access to information about lobbying activities, the financial affairs of elected and appointed public officials, and campaign contributions and expenditures. Voters authorized the creation of the PDC in 1972 with the passage of Initiative 2...

 

2010 Indian filmAnwarTheatrical release posterDirected byAmal NeeradWritten byAmal NeeradUnni R. (dialogues)Produced byRaj Zacharias[1]StarringPrithviraj SukumaranPrakash RajMamtha MohandasLalNarrated byMammootty[2]CinematographySatheesh KurupEdited byVivek HarshanMusic byGopi SundarDistributed byRed Carpet Movies LimitedRelease date 15 October 2010 (2010-10-15) Running time134 minutesCountryIndiaLanguageMalayalamBudget₹4 crore[3] Anwar is a 2010 India...

 

See also: List of the oldest buildings in Rhode Island Valentine Whitman House in 2008 The Valentine Whitman House is an historic stone ender house on Great Road in Lincoln, Rhode Island. The house is one of the oldest surviving buildings in the state. The large farmhouse was built around 1694. The house features a large stone chimney at one end. In 1730 the first town meeting of Smithfield (which then included modern day Lincoln) was held in the house.[1] Images Valentine Whitman Hou...

Species of single-celled organism Paramecium aurelia Scientific classification Domain: Eukaryota Clade: Diaphoretickes Clade: SAR Clade: Alveolata Phylum: Ciliophora Class: Oligohymenophorea Order: Peniculida Family: Parameciidae Genus: Paramecium Species: P. aurelia Binomial name Paramecium aureliaEhr. Paramecium aurelia[1] are unicellular organisms belonging to the genus Paramecium of the phylum Ciliophora.[2] They are covered in cilia which help in movement and feeding...

 

Swiss politician Marina Carobbio GuscettiCouncillor of StatesIncumbentAssumed office 2 December 2019Preceded byFilippo LombardiVice-chairwoman of the Social Democratic Party of SwitzerlandIncumbentAssumed office 1 March 2008President of the National CouncilIn office26 November 2018 – 1 December 2019Preceded byDominique de BumanSucceeded byIsabelle MoretNational CouncillorIn office4 June 2007 – 1 December 2019Preceded byFranco CavalliSucceeded byBruno StorniDeputy...

 

Mukul KulkarniMukul Kulkarni in concert - Goa 2014Background informationBorn1980 (age 42–43)OriginKolhapur, IndiaGenresHindustani Classical MusicOccupation(s)VocalistWebsitewww.mukulkulkarni.comMusical artist Mukul Kulkarni is an Indian classical vocalist. He is disciple of Arun Kashalkar (Agra-Gwalior gharana) and Sharad Sathe (Gwalior gharana).[1][2][3] He is an 'A' grade artist of All India Radio. Mukul Kulkarni performs around India and abroad.[4]...

Radio station in Kokomo, IndianaWWKIKokomo, IndianaBroadcast areaNorth Central IndianaFrequency100.5 MHzBranding100.5 KIProgrammingFormatCountryAffiliationsCompass Media NetworksWestwood OneOwnershipOwnerCumulus Media(Radio License Holding CBC, LLC)HistoryFirst air dateOctober 21, 1962; 61 years ago (1962-10-21)Technical informationFacility ID60133ClassBERP50,000 wattsHAAT143 meters (469 ft)LinksWebcastListen liveWebsitewwki.com WWKI (100.5 FM) is a commercial radio sta...

 

Variable star in the constellation Pavo Rho Pavonis Location of ρ Pavonis (circled) Observation dataEpoch J2000      Equinox J2000 Constellation Pavo Right ascension 20h 37m 35.31275s[1] Declination −61° 31′ 47.7145″[1] Apparent magnitude (V) 4.86[2] (4.85 – 4.91)[3] Characteristics Spectral type Fm δ Del[4] U−B color index +0.19[3] B−V color index +0....

 

School in Waverley, New South Wales, AustraliaWaverley CollegeLocation131 Birrell StreetWaverley, New South WalesAustraliaCoordinates33°53′50″S 151°15′21″E / 33.89722°S 151.25583°E / -33.89722; 151.25583InformationTypeIndependent early learning, primary and secondary schoolMottoLatin: Virtus Sola Nobilitat(Virtue alone ennobles[1])Religious affiliation(s)CatholicismDenominationCongregation of Christian BrothersEstablished27 January 1903;...

Kozly Gemeente in Tsjechië Situering Regio (kraj) Liberec  District (okres) Česká Lípa Coördinaten 50° 39′ NB, 14° 27′ OL Algemeen Oppervlakte 5,65 km² Inwoners 127 (3.7.2006) Hoogte 395 m Overig Postcode(s) 471 02 Gemeentenummer 546232 Website Officiële website Foto's Portaal    Tsjechië Kozly (Duits: Kosel) is een Tsjechische gemeente in de regio Liberec, en maakt deel uit van het district Česká Lípa. Kozly telt 127 inwoners. Geplaatst op:14-01-2...

 

General of the Chinese People's Liberation Army In this Chinese name, the family name is Zhang. GeneralZhang Youxia张又侠Zhang in December 2017Vice Chairman of the Central Military CommissionIncumbentAssumed office State Commission: 19 March 2018 Party Commission: 25 October 2017Serving with Xu Qiliang and He WeidongChairmanXi JinpingHead of the Equipment Development Department of the Central Military CommissionIn officeJanuary 2016 – August 2017Succeeded byLi Shangf...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!