Powerful number

144000 is a powerful number.
Every exponent in its prime factorization is larger than 1.
It is the product of a square and a cube.

A powerful number is a positive integer m such that for every prime number p dividing m, p2 also divides m. Equivalently, a powerful number is the product of a square and a cube, that is, a number m of the form m = a2b3, where a and b are positive integers. Powerful numbers are also known as squareful, square-full, or 2-full. Paul Erdős and George Szekeres studied such numbers and Solomon W. Golomb named such numbers powerful.

The following is a list of all powerful numbers between 1 and 1000:

1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 72, 81, 100, 108, 121, 125, 128, 144, 169, 196, 200, 216, 225, 243, 256, 288, 289, 324, 343, 361, 392, 400, 432, 441, 484, 500, 512, 529, 576, 625, 648, 675, 676, 729, 784, 800, 841, 864, 900, 961, 968, 972, 1000, ... (sequence A001694 in the OEIS).
Powerful numbers up to 100 with prime factors colour-coded – 1 is a special case

Equivalence of the two definitions

If m = a2b3, then every prime in the prime factorization of a appears in the prime factorization of m with an exponent of at least two, and every prime in the prime factorization of b appears in the prime factorization of m with an exponent of at least three; therefore, m is powerful.

In the other direction, suppose that m is powerful, with prime factorization

where each αi ≥ 2. Define γi to be three if αi is odd, and zero otherwise, and define βi = αiγi. Then, all values βi are nonnegative even integers, and all values γi are either zero or three, so

supplies the desired representation of m as a product of a square and a cube.

Informally, given the prime factorization of m, take b to be the product of the prime factors of m that have an odd exponent (if there are none, then take b to be 1). Because m is powerful, each prime factor with an odd exponent has an exponent that is at least 3, so m/b3 is an integer. In addition, each prime factor of m/b3 has an even exponent, so m/b3 is a perfect square, so call this a2; then m = a2b3. For example:

The representation m = a2b3 calculated in this way has the property that b is squarefree, and is uniquely defined by this property.

Mathematical properties

The sum of the reciprocals of the powerful numbers converges. The value of this sum may be written in several other ways, including as the infinite product

where p runs over all primes, ζ(s) denotes the Riemann zeta function, and ζ(3) is Apéry's constant.[1] (sequence A082695 in the OEIS) More generally, the sum of the reciprocals of the sth powers of the powerful numbers (a Dirichlet series generating function) is equal to

whenever it converges.

Let k(x) denote the number of powerful numbers in the interval [1,x]. Then k(x) is proportional to the square root of x. More precisely,

(Golomb, 1970).

The two smallest consecutive powerful numbers are 8 and 9. Since Pell's equation x2 − 8y2 = 1 has infinitely many integral solutions, there are infinitely many pairs of consecutive powerful numbers (Golomb, 1970); more generally, one can find consecutive powerful numbers by solving a similar Pell equation x2ny2 = ±1 for any perfect cube n. However, one of the two powerful numbers in a pair formed in this way must be a square. According to Guy, Erdős has asked whether there are infinitely many pairs of consecutive powerful numbers such as (233, 2332132) in which neither number in the pair is a square. Walker (1976) showed that there are indeed infinitely many such pairs by showing that 33c2 + 1 = 73d2 has infinitely many solutions. Walker's solutions to this equation are generated, for any odd integer k, by considering the number

for integers a divisible by 7 and b divisible by 3, and constructing from a and b the consecutive powerful numbers 7a2 and 3b2 with 7a2 = 1 + 3b2. The smallest consecutive pair in this family is generated for k = 1, a = 2637362, and b = 4028637 as

and

Unsolved problem in mathematics:
Can three consecutive numbers be powerful?

It is a conjecture of Erdős, Mollin, and Walsh that there are no three consecutive powerful numbers. If a triplet of consecutive powerful numbers exists, then its smallest term must be congruent to 7, 27, or 35 modulo 36.[2]

If the abc conjecture is true, there are only a finite number of sets of three consecutive powerful numbers.

Sums and differences of powerful numbers

Any odd number is a difference of two consecutive squares: (k + 1)2 = k2 + 2k + 1, so (k + 1)2 − k2 = 2k + 1. Similarly, any multiple of four is a difference of the squares of two numbers that differ by two: (k + 2)2 − k2 = 4k + 4. However, a singly even number, that is, a number divisible by two but not by four, cannot be expressed as a difference of squares. This motivates the question of determining which singly even numbers can be expressed as differences of powerful numbers. Golomb exhibited some representations of this type:

2 = 33 − 52
10 = 133 − 37
18 = 192 − 73 = 35 − 152.

It had been conjectured that 6 cannot be so represented, and Golomb conjectured that there are infinitely many integers which cannot be represented as a difference between two powerful numbers. However, Narkiewicz showed that 6 can be so represented in infinitely many ways such as

6 = 5473 − 4632,

and McDaniel showed that every integer has infinitely many such representations (McDaniel, 1982).

Erdős conjectured that every sufficiently large integer is a sum of at most three powerful numbers; this was proved by Roger Heath-Brown (1987).

Generalization

More generally, we can consider the integers all of whose prime factors have exponents at least k. Such an integer is called a k-powerful number, k-ful number, or k-full number.

(2k+1 − 1)k,  2k(2k+1 − 1)k,   (2k+1 − 1)k+1

are k-powerful numbers in an arithmetic progression. Moreover, if a1, a2, ..., as are k-powerful in an arithmetic progression with common difference d, then

a1(as + d)k,  

a2(as + d)k, ..., as(as + d)k, (as + d)k+1

are s + 1 k-powerful numbers in an arithmetic progression.

We have an identity involving k-powerful numbers:

ak(a + ... + 1)k + ak + 1(a + ... + 1)k + ... + ak + (a + ... + 1)k = ak(a + ... +1)k+1.

This gives infinitely many l+1-tuples of k-powerful numbers whose sum is also k-powerful. Nitaj shows there are infinitely many solutions of x + y = z in relatively prime 3-powerful numbers(Nitaj, 1995). Cohn constructs an infinite family of solutions of x + y = z in relatively prime non-cube 3-powerful numbers as follows: the triplet

X = 9712247684771506604963490444281, Y = 32295800804958334401937923416351, Z = 27474621855216870941749052236511

is a solution of the equation 32X3 + 49Y3 = 81Z3. We can construct another solution by setting X = X(49Y3 + 81Z3), Y = −Y(32X3 + 81Z3), Z = Z(32X3 − 49Y3) and omitting the common divisor.

See also

Notes

  1. ^ (Golomb, 1970)
  2. ^ Beckon, Edward (2019). "On Consecutive Triples of Powerful Numbers". Rose-Hulman Undergraduate Mathematics Journal. 20 (2): 25–27.

References

Read other articles:

مركز الحرب الجويمركز الحرب الجوي (بالعربية) معلومات عامةالاختصار AWC (بالإنجليزية) الجنسية السعودية التأسيس 31 مارس 2019النوع حربيالمقر الرئيسي السعوديةالمنظومة الاقتصاديةالشركة الأم وزارة دفاع المملكة العربية السعودية مناطق الخدمة السعوديةأهم الشخصياتالمالك  السعوديةا

 

Asesinato de René Schneider General René SchneiderLugar Las Condes, intersección de calles Martín de Zamora con Américo VespucioCoordenadas 33°25′17″S 70°34′47″O / -33.4215, -70.579666666667Blanco(s) René SchneiderFecha 22 de octubre de 197008:00 - 08:10 (UTC-3)Tipo de ataque EmboscadaMuertos 1 (general Schneider)Heridos 1 chofer, cabo primero Leopoldo MaunaPerpetrador(es) Condenados:Autores de los disparos Julio Bouchón[1]​José Melgoza Garay[1]​L...

 

قرية بني زومة  - قرية -  تقسيم إداري البلد  اليمن المحافظة محافظة صنعاء المديرية مديرية بني حشيش العزلة عزلة الشرفة السكان التعداد السكاني 2004 السكان 164   • الذكور 83   • الإناث 81   • عدد الأسر 19   • عدد المساكن 20 معلومات أخرى التوقيت توقيت اليمن (+3 غرينيت...

Category 1 Atlantic hurricane in 2020 Hurricane Isaias Hurricane Isaias intensifying near The Carolinas on August 3Meteorological historyFormedJuly 30, 2020ExtratropicalAugust 4DissipatedAugust 5, 2020Category 1 hurricane1-minute sustained (SSHWS/NWS)Highest winds90 mph (150 km/h)Lowest pressure986 mbar (hPa); 29.12 inHgOverall effectsFatalities17 totalDamage$5.03 billion (2020 USD)Areas affectedWest Africa, Lesser Antilles, Greater Antilles, The B...

 

Bahnhofsgebäude Der U-Bahnhof Podbielskiallee ist ein U-Bahnhof der Linie U3 der Berliner U-Bahn im Ortsteil Dahlem des Bezirks Steglitz-Zehlendorf. Wie die anderen Bahnhöfe der Wilmersdorf-Dahlemer-Schnellbahn ging er am 12. Oktober 1913 in Betrieb. Der Bahnhof und die vorbeiführende Straße sind nach dem preußischen General Victor von Podbielski benannt. Der erste der Dahlemer U-Bahnhöfe markiert den Übergang von der Untergrund- zur Einschnittbahn. Der Bahnsteig ist als Mitt...

 

Set of phonetic symbols used for voice quality, such as to transcribe disordered speech Chart of the Voice Quality Symbols, as of 2016 Voice Quality Symbols (VoQS) are a set of phonetic symbols used to transcribe disordered speech for what in speech pathology is known as voice quality. This phrase is usually synonymous with phonation in phonetics, but in speech pathology encompasses secondary articulation as well. VoQS symbols are normally combined with curly braces that span a section of spe...

2005 anime film by Morio Asaka Last Order: Final Fantasy VIILast Order promotional artwork featuring Zack (front), Sephiroth (middle), and Jenova (back)ラストオーダー -ファイナルファンタジーVII-(Rasuto Ōdā -Fainaru Fantajī Sebun-)GenreFantasy, action, Science fiction, cyberpunk Original video animationDirected byMorio AsakaProduced byMasao MaruyamaJungo MarutaAkio OfujiWritten byScreenplay:Kazuhiko InukaiKazushige NojimaMusic byTakeharu IshimotoStudioM...

 

Les attaques de requins dans le New Jersey en 1916 furent une série d'attaques de requins qui se déroula entre le 1er juillet et le 12 juillet 1916, le long des côtes du New Jersey et qui occasionna la mort de quatre personnes. Cet événement tragique a profondément marqué la culture populaire américaine et a été l'objet de nombreux documentaires. Ces attaques ont été célèbres pour avoir été les premières à avoir un écho médiatique à travers le pays. Elles ont aussi pouss...

 

العلاقات التشادية الميكرونيسية تشاد ولايات ميكرونيسيا المتحدة   تشاد   ولايات ميكرونيسيا المتحدة تعديل مصدري - تعديل   العلاقات التشادية الميكرونيسية هي العلاقات الثنائية التي تجمع بين تشاد وولايات ميكرونيسيا المتحدة.[1][2][3][4][5] مقارنة بي...

819

Calendar year Millennium: 1st millennium Centuries: 8th century 9th century 10th century Decades: 790s 800s 810s 820s 830s Years: 816 817 818 819 820 821 822 819 by topic Leaders Political entities State leaders Religious leaders Categories Deaths Establishments 819 in various calendarsGregorian calendar819DCCCXIXAb urbe condita1572Armenian calendar268ԹՎ ՄԿԸAssyrian calendar5569Balinese saka calendar740–741Bengali calendar226Berber calendar1769Buddhist calendar1363B...

 

Airport in Colorado, United States of America San Luis Valley Regional AirportBergman FieldTerminal buildingIATA: ALSICAO: KALSFAA LID: ALSWMO: 72462SummaryAirport typePublicOwnerCity and County of AlamosaServesSan Luis Valley, Southern Colorado, Northern New MexicoLocation2490 State Avenue, Alamosa, Colorado 81101Elevation AMSL7,539 ft / 2,298 mCoordinates37°26′06″N 105°51′59″W / 37.43500°N 105.86639°W / 37.43500; -105.86639WebsiteSan Luis V...

 

Logic-based number-placement puzzle This article is about the puzzle. For the disease, see Sodoku. A typical Sudoku puzzleThe solution to the puzzle above Sudoku (/suːˈdoʊkuː, -ˈdɒk-, sə-/; Japanese: 数独, romanized: sūdoku, lit. 'digit-single'; originally called Number Place)[1] is a logic-based,[2][3] combinatorial[4] number-placement puzzle. In classic Sudoku, the objective is to fill a 9 × 9 grid with digits so that e...

Cet article est une ébauche concernant la politique française et Djibouti. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. 1958 1977 Référendum sur l'indépendance de la Côte française des Somalis 19 mars 1967 Type d’élection Référendum Corps électoral et résultats Inscrits 39 312 Votants 37 332   94,96 % Blancs et nuls 111 Indépendance Pour   39,40 % Contre &#...

 

Pour les articles homonymes, voir IRG. Internationale des résistant(e)s à la guerreHistoireFondation 1921OrganisationSite web www.wri-irg.orgmodifier - modifier le code - modifier Wikidata L'Internationale des résistant(e)s à la guerre (IRG) est une organisation pacifiste fondée en 1921 lors des rencontres de Bilthoven aux Pays-Bas. D'abord appelée PACO (« paix », en espéranto), elle est connue sur le plan international sous le nom anglais War Resisters' International (WRI)...

 

2010 Indian film directed by R. Balki PaaTheatrical release posterDirected byR. BalkiWritten byR. BalkiProduced byAmitabh BachchanAbhishek BachchanSunil ManchandaStarringAmitabh BachchanAbhishek BachchanVidya BalanParesh RawalArundhati NagCinematographyP. C. SriramEdited byAnil NaiduMusic byIlaiyaraajaProductioncompaniesReliance Big PicturesAmitabh Bachchan CorporationMAD EntertainmentDistributed byReliance Big PicturesRelease date 4 December 2009 (2009-12-04) Running time133 m...

Урал-432009 Урал-432009 на выставке Интерполитех 2013. Урал-432009 Классификация MRAP Боевая масса, т 17,3 Экипаж, чел. 1 Десант, чел. 15 Размеры Длина корпуса, мм 8500 Ширина, мм 2550 Высота, мм 3100 Клиренс, мм 400 Двигатель ЯМЗ-6565 (ЯМЗ-536) Общие данные Производитель Ярославский моторный завод Тип ди...

 

Means of quantifying system performance Audio Precision APx525 analyzer for making audio system measurements Audio system measurements are a means of quantifying system performance. These measurements are made for several purposes. Designers take measurements so that they can specify the performance of a piece of equipment. Maintenance engineers make them to ensure equipment is still working to specification, or to ensure that the cumulative defects of an audio path are within limits consider...

 

List of events ← 1939 1938 1937 1940 in Iceland → 1941 1942 1943 Decades: 1920s 1930s 1940s 1950s 1960s See also:Other events in 1940 · Timeline of Icelandic history The following lists events that happened in 1940 in Iceland. Incumbents Monarch - Kristján X Prime Minister – Hermann Jónasson Events This section needs expansion. You can help by adding to it. (July 2016) Births Rannveig Guðmundsdóttir 11 January – Örn Steinsen, footballer 15 September ...

Type of representation of music Graphic notation (or graphic score) is the representation of music through the use of visual symbols outside the realm of traditional music notation. Graphic notation became popular in the 1950s, and can be used either in combination with or instead of traditional music notation.[1] Graphic notation was influenced by contemporary visual art trends in its conception, bringing stylistic components from modern art into music.[2] Composers often rel...

 

The Decorations of the Romanian Royal House are a reward for conspicuous and special merits of the recipients for the Romanian state and the Romanian Royal House. After the Fundamental Rules of the Royal House of Romania were signed in 2007,[1] former King Michael I, who abdicated in 1947 under communist pressure, reinstituted the Order of Carol I and the Order of the Crown, and he also instituted three decorations and two medals. The orders, decorations and medals currently awarded a...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!