"Robin's theorem" redirects here. For Robbins' theorem in graph theory, see
Robbins' theorem .
Arithmetic function related to the divisors of an integer
Divisor function σ 0 (n ) up to n = 250
Sigma function σ 1 (n ) up to n = 250
Sum of the squares of divisors, σ 2 (n ), up to n = 250
Sum of cubes of divisors, σ 3 (n ) up to n = 250
In mathematics , and specifically in number theory , a divisor function is an arithmetic function related to the divisors of an integer . When referred to as the divisor function, it counts the number of divisors of an integer (including 1 and the number itself). It appears in a number of remarkable identities, including relationships on the Riemann zeta function and the Eisenstein series of modular forms . Divisor functions were studied by Ramanujan , who gave a number of important congruences and identities ; these are treated separately in the article Ramanujan's sum .
A related function is the divisor summatory function , which, as the name implies, is a sum over the divisor function.
Definition
The sum of positive divisors function σ z (n ), for a real or complex number z , is defined as the sum of the z th powers of the positive divisors of n . It can be expressed in sigma notation as
σ σ -->
z
(
n
)
=
∑ ∑ -->
d
∣ ∣ -->
n
d
z
,
{\displaystyle \sigma _{z}(n)=\sum _{d\mid n}d^{z}\,\!,}
where
d
∣ ∣ -->
n
{\displaystyle {d\mid n}}
is shorthand for "d divides n ".
The notations d (n ), ν (n ) and τ (n ) (for the German Teiler = divisors) are also used to denote σ 0 (n ), or the number-of-divisors function [ 1] [ 2] (OEIS : A000005 ). When z is 1, the function is called the sigma function or sum-of-divisors function ,[ 1] [ 3] and the subscript is often omitted, so σ (n ) is the same as σ 1 (n ) (OEIS : A000203 ).
The aliquot sum s (n ) of n is the sum of the proper divisors (that is, the divisors excluding n itself, OEIS : A001065 ), and equals σ 1 (n ) − n ; the aliquot sequence of n is formed by repeatedly applying the aliquot sum function.
Example
For example, σ 0 (12) is the number of the divisors of 12:
σ σ -->
0
(
12
)
=
1
0
+
2
0
+
3
0
+
4
0
+
6
0
+
12
0
=
1
+
1
+
1
+
1
+
1
+
1
=
6
,
{\displaystyle {\begin{aligned}\sigma _{0}(12)&=1^{0}+2^{0}+3^{0}+4^{0}+6^{0}+12^{0}\\&=1+1+1+1+1+1=6,\end{aligned}}}
while σ 1 (12) is the sum of all the divisors:
σ σ -->
1
(
12
)
=
1
1
+
2
1
+
3
1
+
4
1
+
6
1
+
12
1
=
1
+
2
+
3
+
4
+
6
+
12
=
28
,
{\displaystyle {\begin{aligned}\sigma _{1}(12)&=1^{1}+2^{1}+3^{1}+4^{1}+6^{1}+12^{1}\\&=1+2+3+4+6+12=28,\end{aligned}}}
and the aliquot sum s(12) of proper divisors is:
s
(
12
)
=
1
1
+
2
1
+
3
1
+
4
1
+
6
1
=
1
+
2
+
3
+
4
+
6
=
16.
{\displaystyle {\begin{aligned}s(12)&=1^{1}+2^{1}+3^{1}+4^{1}+6^{1}\\&=1+2+3+4+6=16.\end{aligned}}}
σ −1 (n ) is sometimes called the abundancy index of n , and we have:
σ σ -->
− − -->
1
(
12
)
=
1
− − -->
1
+
2
− − -->
1
+
3
− − -->
1
+
4
− − -->
1
+
6
− − -->
1
+
12
− − -->
1
=
1
1
+
1
2
+
1
3
+
1
4
+
1
6
+
1
12
=
12
12
+
6
12
+
4
12
+
3
12
+
2
12
+
1
12
=
12
+
6
+
4
+
3
+
2
+
1
12
=
28
12
=
7
3
=
σ σ -->
1
(
12
)
12
{\displaystyle {\begin{aligned}\sigma _{-1}(12)&=1^{-1}+2^{-1}+3^{-1}+4^{-1}+6^{-1}+12^{-1}\\[6pt]&={\tfrac {1}{1}}+{\tfrac {1}{2}}+{\tfrac {1}{3}}+{\tfrac {1}{4}}+{\tfrac {1}{6}}+{\tfrac {1}{12}}\\[6pt]&={\tfrac {12}{12}}+{\tfrac {6}{12}}+{\tfrac {4}{12}}+{\tfrac {3}{12}}+{\tfrac {2}{12}}+{\tfrac {1}{12}}\\[6pt]&={\tfrac {12+6+4+3+2+1}{12}}={\tfrac {28}{12}}={\tfrac {7}{3}}={\tfrac {\sigma _{1}(12)}{12}}\end{aligned}}}
Table of values
The cases x = 2 to 5 are listed in OEIS : A001157 through OEIS : A001160 , x = 6 to 24 are listed in OEIS : A013954 through OEIS : A013972 .
n
prime factorization
𝜎0 (n )
𝜎1 (n )
𝜎2 (n )
𝜎3 (n )
𝜎4 (n )
1
1
1
1
1
1
1
2
2
2
3
5
9
17
3
3
2
4
10
28
82
4
22
3
7
21
73
273
5
5
2
6
26
126
626
6
2×3
4
12
50
252
1394
7
7
2
8
50
344
2402
8
23
4
15
85
585
4369
9
32
3
13
91
757
6643
10
2×5
4
18
130
1134
10642
11
11
2
12
122
1332
14642
12
22 ×3
6
28
210
2044
22386
13
13
2
14
170
2198
28562
14
2×7
4
24
250
3096
40834
15
3×5
4
24
260
3528
51332
16
24
5
31
341
4681
69905
17
17
2
18
290
4914
83522
18
2×32
6
39
455
6813
112931
19
19
2
20
362
6860
130322
20
22 ×5
6
42
546
9198
170898
21
3×7
4
32
500
9632
196964
22
2×11
4
36
610
11988
248914
23
23
2
24
530
12168
279842
24
23 ×3
8
60
850
16380
358258
25
52
3
31
651
15751
391251
26
2×13
4
42
850
19782
485554
27
33
4
40
820
20440
538084
28
22 ×7
6
56
1050
25112
655746
29
29
2
30
842
24390
707282
30
2×3×5
8
72
1300
31752
872644
31
31
2
32
962
29792
923522
32
25
6
63
1365
37449
1118481
33
3×11
4
48
1220
37296
1200644
34
2×17
4
54
1450
44226
1419874
35
5×7
4
48
1300
43344
1503652
36
22 ×32
9
91
1911
55261
1813539
37
37
2
38
1370
50654
1874162
38
2×19
4
60
1810
61740
2215474
39
3×13
4
56
1700
61544
2342084
40
23 ×5
8
90
2210
73710
2734994
41
41
2
42
1682
68922
2825762
42
2×3×7
8
96
2500
86688
3348388
43
43
2
44
1850
79508
3418802
44
22 ×11
6
84
2562
97236
3997266
45
32 ×5
6
78
2366
95382
4158518
46
2×23
4
72
2650
109512
4757314
47
47
2
48
2210
103824
4879682
48
24 ×3
10
124
3410
131068
5732210
49
72
3
57
2451
117993
5767203
50
2×52
6
93
3255
141759
6651267
Properties
For a prime number p ,
σ σ -->
0
(
p
)
=
2
σ σ -->
0
(
p
n
)
=
n
+
1
σ σ -->
1
(
p
)
=
p
+
1
{\displaystyle {\begin{aligned}\sigma _{0}(p)&=2\\\sigma _{0}(p^{n})&=n+1\\\sigma _{1}(p)&=p+1\end{aligned}}}
because by definition, the factors of a prime number are 1 and itself. Also, where pn # denotes the primorial ,
σ σ -->
0
(
p
n
# # -->
)
=
2
n
{\displaystyle \sigma _{0}(p_{n}\#)=2^{n}}
since n prime factors allow a sequence of binary selection (
p
i
{\displaystyle p_{i}}
or 1) from n terms for each proper divisor formed. However, these are not in general the smallest numbers whose number of divisors is a power of two ; instead, the smallest such number may be obtained by multiplying together the first n Fermi–Dirac primes , prime powers whose exponent is a power of two.[ 4]
Clearly,
1
<
σ σ -->
0
(
n
)
<
n
{\displaystyle 1<\sigma _{0}(n)<n}
for all
n
>
2
{\displaystyle n>2}
, and
σ σ -->
x
(
n
)
>
n
{\displaystyle \sigma _{x}(n)>n}
for all
n
>
1
{\displaystyle n>1}
,
x
>
0
{\displaystyle x>0}
.
The divisor function is multiplicative (since each divisor c of the product mn with
gcd
(
m
,
n
)
=
1
{\displaystyle \gcd(m,n)=1}
distinctively correspond to a divisor a of m and a divisor b of n ), but not completely multiplicative :
gcd
(
a
,
b
)
=
1
⟹ ⟹ -->
σ σ -->
x
(
a
b
)
=
σ σ -->
x
(
a
)
σ σ -->
x
(
b
)
.
{\displaystyle \gcd(a,b)=1\Longrightarrow \sigma _{x}(ab)=\sigma _{x}(a)\sigma _{x}(b).}
The consequence of this is that, if we write
n
=
∏ ∏ -->
i
=
1
r
p
i
a
i
{\displaystyle n=\prod _{i=1}^{r}p_{i}^{a_{i}}}
where r = ω (n ) is the number of distinct prime factors of n , pi is the i th prime factor, and ai is the maximum power of pi by which n is divisible , then we have:
σ σ -->
x
(
n
)
=
∏ ∏ -->
i
=
1
r
∑ ∑ -->
j
=
0
a
i
p
i
j
x
=
∏ ∏ -->
i
=
1
r
(
1
+
p
i
x
+
p
i
2
x
+
⋯ ⋯ -->
+
p
i
a
i
x
)
.
{\displaystyle \sigma _{x}(n)=\prod _{i=1}^{r}\sum _{j=0}^{a_{i}}p_{i}^{jx}=\prod _{i=1}^{r}\left(1+p_{i}^{x}+p_{i}^{2x}+\cdots +p_{i}^{a_{i}x}\right).}
which, when x ≠ 0, is equivalent to the useful formula:
σ σ -->
x
(
n
)
=
∏ ∏ -->
i
=
1
r
p
i
(
a
i
+
1
)
x
− − -->
1
p
i
x
− − -->
1
.
{\displaystyle \sigma _{x}(n)=\prod _{i=1}^{r}{\frac {p_{i}^{(a_{i}+1)x}-1}{p_{i}^{x}-1}}.}
When x = 0,
σ σ -->
0
(
n
)
{\displaystyle \sigma _{0}(n)}
is:
σ σ -->
0
(
n
)
=
∏ ∏ -->
i
=
1
r
(
a
i
+
1
)
.
{\displaystyle \sigma _{0}(n)=\prod _{i=1}^{r}(a_{i}+1).}
This result can be directly deduced from the fact that all divisors of
n
{\displaystyle n}
are uniquely determined by the distinct tuples
(
x
1
,
x
2
,
.
.
.
,
x
i
,
.
.
.
,
x
r
)
{\displaystyle (x_{1},x_{2},...,x_{i},...,x_{r})}
of integers with
0
≤ ≤ -->
x
i
≤ ≤ -->
a
i
{\displaystyle 0\leq x_{i}\leq a_{i}}
(i.e.
a
i
+
1
{\displaystyle a_{i}+1}
independent choices for each
x
i
{\displaystyle x_{i}}
).
For example, if n is 24, there are two prime factors (p 1 is 2; p 2 is 3); noting that 24 is the product of 23 ×31 , a 1 is 3 and a 2 is 1. Thus we can calculate
σ σ -->
0
(
24
)
{\displaystyle \sigma _{0}(24)}
as so:
σ σ -->
0
(
24
)
=
∏ ∏ -->
i
=
1
2
(
a
i
+
1
)
=
(
3
+
1
)
(
1
+
1
)
=
4
⋅ ⋅ -->
2
=
8.
{\displaystyle \sigma _{0}(24)=\prod _{i=1}^{2}(a_{i}+1)=(3+1)(1+1)=4\cdot 2=8.}
The eight divisors counted by this formula are 1, 2, 4, 8, 3, 6, 12, and 24.
Other properties and identities
Euler proved the remarkable recurrence:[ 6] [ 7] [ 8]
σ σ -->
1
(
n
)
=
σ σ -->
1
(
n
− − -->
1
)
+
σ σ -->
1
(
n
− − -->
2
)
− − -->
σ σ -->
1
(
n
− − -->
5
)
− − -->
σ σ -->
1
(
n
− − -->
7
)
+
σ σ -->
1
(
n
− − -->
12
)
+
σ σ -->
1
(
n
− − -->
15
)
+
⋯ ⋯ -->
=
∑ ∑ -->
i
∈ ∈ -->
N
(
− − -->
1
)
i
+
1
(
σ σ -->
1
(
n
− − -->
1
2
(
3
i
2
− − -->
i
)
)
+
σ σ -->
1
(
n
− − -->
1
2
(
3
i
2
+
i
)
)
)
,
{\displaystyle {\begin{aligned}\sigma _{1}(n)&=\sigma _{1}(n-1)+\sigma _{1}(n-2)-\sigma _{1}(n-5)-\sigma _{1}(n-7)+\sigma _{1}(n-12)+\sigma _{1}(n-15)+\cdots \\[12mu]&=\sum _{i\in \mathbb {N} }(-1)^{i+1}\left(\sigma _{1}\left(n-{\frac {1}{2}}\left(3i^{2}-i\right)\right)+\sigma _{1}\left(n-{\frac {1}{2}}\left(3i^{2}+i\right)\right)\right),\end{aligned}}}
where
σ σ -->
1
(
0
)
=
n
{\displaystyle \sigma _{1}(0)=n}
if it occurs and
σ σ -->
1
(
x
)
=
0
{\displaystyle \sigma _{1}(x)=0}
for
x
<
0
{\displaystyle x<0}
, and
1
2
(
3
i
2
∓ ∓ -->
i
)
{\displaystyle {\tfrac {1}{2}}\left(3i^{2}\mp i\right)}
are consecutive pairs of generalized pentagonal numbers (OEIS : A001318 , starting at offset 1). Indeed, Euler proved this by logarithmic differentiation of the identity in his pentagonal number theorem .
For a non-square integer, n , every divisor, d , of n is paired with divisor n /d of n and
σ σ -->
0
(
n
)
{\displaystyle \sigma _{0}(n)}
is even; for a square integer, one divisor (namely
n
{\displaystyle {\sqrt {n}}}
) is not paired with a distinct divisor and
σ σ -->
0
(
n
)
{\displaystyle \sigma _{0}(n)}
is odd. Similarly, the number
σ σ -->
1
(
n
)
{\displaystyle \sigma _{1}(n)}
is odd if and only if n is a square or twice a square.
We also note s (n ) = σ (n ) − n . Here s (n ) denotes the sum of the proper divisors of n , that is, the divisors of n excluding n itself. This function is used to recognize perfect numbers , which are the n such that s (n ) = n . If s (n ) > n , then n is an abundant number , and if s (n ) < n , then n is a deficient number .
If n is a power of 2,
n
=
2
k
{\displaystyle n=2^{k}}
, then
σ σ -->
(
n
)
=
2
⋅ ⋅ -->
2
k
− − -->
1
=
2
n
− − -->
1
{\displaystyle \sigma (n)=2\cdot 2^{k}-1=2n-1}
and
s
(
n
)
=
n
− − -->
1
{\displaystyle s(n)=n-1}
, which makes n almost-perfect .
As an example, for two primes
p
,
q
:
p
<
q
{\displaystyle p,q:p<q}
, let
n
=
p
q
{\displaystyle n=p\,q}
.
Then
σ σ -->
(
n
)
=
(
p
+
1
)
(
q
+
1
)
=
n
+
1
+
(
p
+
q
)
,
{\displaystyle \sigma (n)=(p+1)(q+1)=n+1+(p+q),}
φ φ -->
(
n
)
=
(
p
− − -->
1
)
(
q
− − -->
1
)
=
n
+
1
− − -->
(
p
+
q
)
,
{\displaystyle \varphi (n)=(p-1)(q-1)=n+1-(p+q),}
and
n
+
1
=
(
σ σ -->
(
n
)
+
φ φ -->
(
n
)
)
/
2
,
{\displaystyle n+1=(\sigma (n)+\varphi (n))/2,}
p
+
q
=
(
σ σ -->
(
n
)
− − -->
φ φ -->
(
n
)
)
/
2
,
{\displaystyle p+q=(\sigma (n)-\varphi (n))/2,}
where
φ φ -->
(
n
)
{\displaystyle \varphi (n)}
is Euler's totient function .
Then, the roots of
(
x
− − -->
p
)
(
x
− − -->
q
)
=
x
2
− − -->
(
p
+
q
)
x
+
n
=
x
2
− − -->
[
(
σ σ -->
(
n
)
− − -->
φ φ -->
(
n
)
)
/
2
]
x
+
[
(
σ σ -->
(
n
)
+
φ φ -->
(
n
)
)
/
2
− − -->
1
]
=
0
{\displaystyle (x-p)(x-q)=x^{2}-(p+q)x+n=x^{2}-[(\sigma (n)-\varphi (n))/2]x+[(\sigma (n)+\varphi (n))/2-1]=0}
express p and q in terms of σ (n ) and φ (n ) only, requiring no knowledge of n or
p
+
q
{\displaystyle p+q}
, as
p
=
(
σ σ -->
(
n
)
− − -->
φ φ -->
(
n
)
)
/
4
− − -->
[
(
σ σ -->
(
n
)
− − -->
φ φ -->
(
n
)
)
/
4
]
2
− − -->
[
(
σ σ -->
(
n
)
+
φ φ -->
(
n
)
)
/
2
− − -->
1
]
,
{\displaystyle p=(\sigma (n)-\varphi (n))/4-{\sqrt {[(\sigma (n)-\varphi (n))/4]^{2}-[(\sigma (n)+\varphi (n))/2-1]}},}
q
=
(
σ σ -->
(
n
)
− − -->
φ φ -->
(
n
)
)
/
4
+
[
(
σ σ -->
(
n
)
− − -->
φ φ -->
(
n
)
)
/
4
]
2
− − -->
[
(
σ σ -->
(
n
)
+
φ φ -->
(
n
)
)
/
2
− − -->
1
]
.
{\displaystyle q=(\sigma (n)-\varphi (n))/4+{\sqrt {[(\sigma (n)-\varphi (n))/4]^{2}-[(\sigma (n)+\varphi (n))/2-1]}}.}
Also, knowing n and either
σ σ -->
(
n
)
{\displaystyle \sigma (n)}
or
φ φ -->
(
n
)
{\displaystyle \varphi (n)}
, or, alternatively,
p
+
q
{\displaystyle p+q}
and either
σ σ -->
(
n
)
{\displaystyle \sigma (n)}
or
φ φ -->
(
n
)
{\displaystyle \varphi (n)}
allows an easy recovery of p and q .
In 1984, Roger Heath-Brown proved that the equality
σ σ -->
0
(
n
)
=
σ σ -->
0
(
n
+
1
)
{\displaystyle \sigma _{0}(n)=\sigma _{0}(n+1)}
is true for infinitely many values of n , see OEIS : A005237 .
Dirichlet convolutions
By definition:
σ σ -->
=
Id
∗ ∗ -->
1
{\displaystyle \sigma =\operatorname {Id} *\mathbf {1} }
By Möbius inversion :
Id
=
σ σ -->
∗ ∗ -->
μ μ -->
{\displaystyle \operatorname {Id} =\sigma *\mu }
Series relations
Two Dirichlet series involving the divisor function are:
∑ ∑ -->
n
=
1
∞ ∞ -->
σ σ -->
a
(
n
)
n
s
=
ζ ζ -->
(
s
)
ζ ζ -->
(
s
− − -->
a
)
for
s
>
1
,
s
>
a
+
1
,
{\displaystyle \sum _{n=1}^{\infty }{\frac {\sigma _{a}(n)}{n^{s}}}=\zeta (s)\zeta (s-a)\quad {\text{for}}\quad s>1,s>a+1,}
where
ζ ζ -->
{\displaystyle \zeta }
is the Riemann zeta function . The series for d (n ) = σ 0 (n ) gives:
∑ ∑ -->
n
=
1
∞ ∞ -->
d
(
n
)
n
s
=
ζ ζ -->
2
(
s
)
for
s
>
1
,
{\displaystyle \sum _{n=1}^{\infty }{\frac {d(n)}{n^{s}}}=\zeta ^{2}(s)\quad {\text{for}}\quad s>1,}
and a Ramanujan identity
∑ ∑ -->
n
=
1
∞ ∞ -->
σ σ -->
a
(
n
)
σ σ -->
b
(
n
)
n
s
=
ζ ζ -->
(
s
)
ζ ζ -->
(
s
− − -->
a
)
ζ ζ -->
(
s
− − -->
b
)
ζ ζ -->
(
s
− − -->
a
− − -->
b
)
ζ ζ -->
(
2
s
− − -->
a
− − -->
b
)
,
{\displaystyle \sum _{n=1}^{\infty }{\frac {\sigma _{a}(n)\sigma _{b}(n)}{n^{s}}}={\frac {\zeta (s)\zeta (s-a)\zeta (s-b)\zeta (s-a-b)}{\zeta (2s-a-b)}},}
which is a special case of the Rankin–Selberg convolution .
A Lambert series involving the divisor function is:
∑ ∑ -->
n
=
1
∞ ∞ -->
q
n
σ σ -->
a
(
n
)
=
∑ ∑ -->
n
=
1
∞ ∞ -->
∑ ∑ -->
j
=
1
∞ ∞ -->
n
a
q
j
n
=
∑ ∑ -->
n
=
1
∞ ∞ -->
n
a
q
n
1
− − -->
q
n
{\displaystyle \sum _{n=1}^{\infty }q^{n}\sigma _{a}(n)=\sum _{n=1}^{\infty }\sum _{j=1}^{\infty }n^{a}q^{j\,n}=\sum _{n=1}^{\infty }{\frac {n^{a}q^{n}}{1-q^{n}}}}
for arbitrary complex |q | ≤ 1 and a . This summation also appears as the Fourier series of the Eisenstein series and the invariants of the Weierstrass elliptic functions .
For
k
>
0
{\displaystyle k>0}
, there is an explicit series representation with Ramanujan sums
c
m
(
n
)
{\displaystyle c_{m}(n)}
as :[ 13]
σ σ -->
k
(
n
)
=
ζ ζ -->
(
k
+
1
)
n
k
∑ ∑ -->
m
=
1
∞ ∞ -->
c
m
(
n
)
m
k
+
1
.
{\displaystyle \sigma _{k}(n)=\zeta (k+1)n^{k}\sum _{m=1}^{\infty }{\frac {c_{m}(n)}{m^{k+1}}}.}
The computation of the first terms of
c
m
(
n
)
{\displaystyle c_{m}(n)}
shows its oscillations around the "average value"
ζ ζ -->
(
k
+
1
)
n
k
{\displaystyle \zeta (k+1)n^{k}}
:
σ σ -->
k
(
n
)
=
ζ ζ -->
(
k
+
1
)
n
k
[
1
+
(
− − -->
1
)
n
2
k
+
1
+
2
cos
-->
2
π π -->
n
3
3
k
+
1
+
2
cos
-->
π π -->
n
2
4
k
+
1
+
⋯ ⋯ -->
]
{\displaystyle \sigma _{k}(n)=\zeta (k+1)n^{k}\left[1+{\frac {(-1)^{n}}{2^{k+1}}}+{\frac {2\cos {\frac {2\pi n}{3}}}{3^{k+1}}}+{\frac {2\cos {\frac {\pi n}{2}}}{4^{k+1}}}+\cdots \right]}
Growth rate
In little-o notation , the divisor function satisfies the inequality:
for all
ε ε -->
>
0
,
d
(
n
)
=
o
(
n
ε ε -->
)
.
{\displaystyle {\mbox{for all }}\varepsilon >0,\quad d(n)=o(n^{\varepsilon }).}
More precisely, Severin Wigert showed that:
lim sup
n
→ → -->
∞ ∞ -->
log
-->
d
(
n
)
log
-->
n
/
log
-->
log
-->
n
=
log
-->
2.
{\displaystyle \limsup _{n\to \infty }{\frac {\log d(n)}{\log n/\log \log n}}=\log 2.}
On the other hand, since there are infinitely many prime numbers ,
lim inf
n
→ → -->
∞ ∞ -->
d
(
n
)
=
2.
{\displaystyle \liminf _{n\to \infty }d(n)=2.}
In Big-O notation , Peter Gustav Lejeune Dirichlet showed that the average order of the divisor function satisfies the following inequality:
for all
x
≥ ≥ -->
1
,
∑ ∑ -->
n
≤ ≤ -->
x
d
(
n
)
=
x
log
-->
x
+
(
2
γ γ -->
− − -->
1
)
x
+
O
(
x
)
,
{\displaystyle {\mbox{for all }}x\geq 1,\sum _{n\leq x}d(n)=x\log x+(2\gamma -1)x+O({\sqrt {x}}),}
where
γ γ -->
{\displaystyle \gamma }
is Euler's gamma constant . Improving the bound
O
(
x
)
{\displaystyle O({\sqrt {x}})}
in this formula is known as Dirichlet's divisor problem .
The behaviour of the sigma function is irregular. The asymptotic growth rate of the sigma function can be expressed by:
lim sup
n
→ → -->
∞ ∞ -->
σ σ -->
(
n
)
n
log
-->
log
-->
n
=
e
γ γ -->
,
{\displaystyle \limsup _{n\rightarrow \infty }{\frac {\sigma (n)}{n\,\log \log n}}=e^{\gamma },}
where lim sup is the limit superior . This result is Grönwall 's theorem , published in 1913 (Grönwall 1913 ). His proof uses Mertens' third theorem , which says that:
lim
n
→ → -->
∞ ∞ -->
1
log
-->
n
∏ ∏ -->
p
≤ ≤ -->
n
p
p
− − -->
1
=
e
γ γ -->
,
{\displaystyle \lim _{n\to \infty }{\frac {1}{\log n}}\prod _{p\leq n}{\frac {p}{p-1}}=e^{\gamma },}
where p denotes a prime.
In 1915, Ramanujan proved that under the assumption of the Riemann hypothesis , Robin's inequality
σ σ -->
(
n
)
<
e
γ γ -->
n
log
-->
log
-->
n
{\displaystyle \ \sigma (n)<e^{\gamma }n\log \log n}
(where γ is the Euler–Mascheroni constant )
holds for all sufficiently large n (Ramanujan 1997 ). The largest known value that violates the inequality is n =5040 . In 1984, Guy Robin proved that the inequality is true for all n > 5040 if and only if the Riemann hypothesis is true (Robin 1984 ). This is Robin's theorem and the inequality became known after him. Robin furthermore showed that if the Riemann hypothesis is false then there are an infinite number of values of n that violate the inequality, and it is known that the smallest such n > 5040 must be superabundant (Akbary & Friggstad 2009 ). It has been shown that the inequality holds for large odd and square-free integers, and that the Riemann hypothesis is equivalent to the inequality just for n divisible by the fifth power of a prime (Choie et al. 2007 ).
Robin also proved, unconditionally, that the inequality:
σ σ -->
(
n
)
<
e
γ γ -->
n
log
-->
log
-->
n
+
0.6483
n
log
-->
log
-->
n
{\displaystyle \ \sigma (n)<e^{\gamma }n\log \log n+{\frac {0.6483\ n}{\log \log n}}}
holds for all n ≥ 3.
A related bound was given by Jeffrey Lagarias in 2002, who proved that the Riemann hypothesis is equivalent to the statement that:
σ σ -->
(
n
)
<
H
n
+
e
H
n
log
-->
(
H
n
)
{\displaystyle \sigma (n)<H_{n}+e^{H_{n}}\log(H_{n})}
for every natural number n > 1, where
H
n
{\displaystyle H_{n}}
is the n th harmonic number , (Lagarias 2002 ).
See also
Notes
^ a b Long (1972 , p. 46)
^ Pettofrezzo & Byrkit (1970 , p. 63)
^ Pettofrezzo & Byrkit (1970 , p. 58)
^ Ramanujan, S. (1915), "Highly Composite Numbers" , Proceedings of the London Mathematical Society , s2-14 (1): 347– 409, doi :10.1112/plms/s2_14.1.347 ; see section 47, pp. 405–406, reproduced in Collected Papers of Srinivasa Ramanujan , Cambridge Univ. Press, 2015, pp. 124–125
^ Euler, Leonhard; Bell, Jordan (2004). "An observation on the sums of divisors". arXiv :math/0411587 .
^ https://scholarlycommons.pacific.edu/euler-works/175/ , Découverte d'une loi tout extraordinaire des nombres par rapport à la somme de leurs diviseurs
^ https://scholarlycommons.pacific.edu/euler-works/542/ , De mirabilis proprietatibus numerorum pentagonalium
^ E. Krätzel (1981). Zahlentheorie . Berlin: VEB Deutscher Verlag der Wissenschaften. p. 130. (German)
References
Akbary, Amir; Friggstad, Zachary (2009), "Superabundant numbers and the Riemann hypothesis" (PDF) , American Mathematical Monthly , 116 (3): 273– 275, doi :10.4169/193009709X470128 , archived from the original (PDF) on 2014-04-11 .
Apostol, Tom M. (1976), Introduction to analytic number theory , Undergraduate Texts in Mathematics, New York-Heidelberg: Springer-Verlag, ISBN 978-0-387-90163-3 , MR 0434929 , Zbl 0335.10001
Bach, Eric ; Shallit, Jeffrey , Algorithmic Number Theory , volume 1, 1996, MIT Press. ISBN 0-262-02405-5 , see page 234 in section 8.8.
Caveney, Geoffrey; Nicolas, Jean-Louis ; Sondow, Jonathan (2011), "Robin's theorem, primes, and a new elementary reformulation of the Riemann Hypothesis" (PDF) , INTEGERS: The Electronic Journal of Combinatorial Number Theory , 11 : A33, arXiv :1110.5078 , Bibcode :2011arXiv1110.5078C
Choie, YoungJu ; Lichiardopol, Nicolas; Moree, Pieter ; Solé, Patrick (2007), "On Robin's criterion for the Riemann hypothesis", Journal de théorie des nombres de Bordeaux , 19 (2): 357– 372, arXiv :math.NT/0604314 , doi :10.5802/jtnb.591 , ISSN 1246-7405 , MR 2394891 , S2CID 3207238 , Zbl 1163.11059
Gioia, A. A.; Vaidya, A. M. (1967), "Amicable numbers with opposite parity", The American Mathematical Monthly , 74 (8): 969– 973, doi :10.2307/2315280 , JSTOR 2315280 , MR 0220659
Grönwall, Thomas Hakon (1913), "Some asymptotic expressions in the theory of numbers", Transactions of the American Mathematical Society , 14 : 113– 122, doi :10.1090/S0002-9947-1913-1500940-6
Hardy, G. H. ; Wright, E. M. (2008) [1938], An Introduction to the Theory of Numbers , Revised by D. R. Heath-Brown and J. H. Silverman . Foreword by Andrew Wiles . (6th ed.), Oxford: Oxford University Press , ISBN 978-0-19-921986-5 , MR 2445243 , Zbl 1159.11001
Ivić, Aleksandar (1985), The Riemann zeta-function. The theory of the Riemann zeta-function with applications , A Wiley-Interscience Publication, New York etc.: John Wiley & Sons, pp. 385– 440, ISBN 0-471-80634-X , Zbl 0556.10026
Lagarias, Jeffrey C. (2002), "An elementary problem equivalent to the Riemann hypothesis", The American Mathematical Monthly , 109 (6): 534– 543, arXiv :math/0008177 , doi :10.2307/2695443 , ISSN 0002-9890 , JSTOR 2695443 , MR 1908008 , S2CID 15884740
Long, Calvin T. (1972), Elementary Introduction to Number Theory (2nd ed.), Lexington: D. C. Heath and Company , LCCN 77171950
Pettofrezzo, Anthony J.; Byrkit, Donald R. (1970), Elements of Number Theory , Englewood Cliffs: Prentice Hall , LCCN 77081766
Ramanujan, Srinivasa (1997), "Highly composite numbers, annotated by Jean-Louis Nicolas and Guy Robin", The Ramanujan Journal , 1 (2): 119– 153, doi :10.1023/A:1009764017495 , ISSN 1382-4090 , MR 1606180 , S2CID 115619659
Robin, Guy (1984), "Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann", Journal de Mathématiques Pures et Appliquées , Neuvième Série, 63 (2): 187– 213, ISSN 0021-7824 , MR 0774171
Williams, Kenneth S. (2011), Number theory in the spirit of Liouville , London Mathematical Society Student Texts, vol. 76, Cambridge: Cambridge University Press , ISBN 978-0-521-17562-3 , Zbl 1227.11002
External links
Divisibility-based sets of integers
Overview Factorization forms Constrained divisor sums With many divisors Aliquot sequence -relatedBase -dependentOther sets