17 (number)

← 16 17 18 →
Cardinalseventeen
Ordinal17th
(seventeenth)
Numeral systemseptendecimal
Factorizationprime
Prime7th
Divisors1, 17
Greek numeralΙΖ´
Roman numeralXVII
Binary100012
Ternary1223
Senary256
Octal218
Duodecimal1512
Hexadecimal1116
Hebrew numeralי"ז
Babylonian numeral𒌋𒐛

17 (seventeen) is the natural number following 16 and preceding 18. It is a prime number.

17 was described at MIT as "the least random number", according to the Jargon File.[1] This is supposedly because, in a study where respondents were asked to choose a random number from 1 to 20, 17 was the most common choice. This study has been repeated a number of times.[2]

Mathematics

17 is a Leyland number[3] and Leyland prime,[4] using 2 & 3 (23 + 32) and using 4 and 5,[5][6] using 3 & 4 (34 - 43). 17 is a Fermat prime. 17 is one of six lucky numbers of Euler.[7]

Since seventeen is a Fermat prime, regular heptadecagons can be constructed with a compass and unmarked ruler. This was proven by Carl Friedrich Gauss and ultimately led him to choose mathematics over philology for his studies.[8][9]

The minimum possible number of givens for a sudoku puzzle with a unique solution is 17.[10][11]

Geometric properties

Two-dimensions

The Spiral of Theodorus, with a maximum right triangles laid edge-to-edge before one revolution is completed. The largest triangle has a hypotenuse of

17 is the least for the Theodorus Spiral to complete one revolution.[23] This, in the sense of Plato, who questioned why Theodorus (his tutor) stopped at when illustrating adjacent right triangles whose bases are units and heights are successive square roots, starting with . In part due to Theodorus’s work as outlined in Plato’s Theaetetus, it is believed that Theodorus had proved all the square roots of non-square integers from 3 to 17 are irrational by means of this spiral.

Enumeration of icosahedron stellations

In three-dimensional space, there are seventeen distinct fully supported stellations generated by an icosahedron.[24] The seventeenth prime number is 59, which is equal to the total number of stellations of the icosahedron by Miller's rules.[25][26] Without counting the icosahedron as a zeroth stellation, this total becomes 58, a count equal to the sum of the first seven prime numbers (2 + 3 + 5 + 7 ... + 17).[27] Seventeen distinct fully supported stellations are also produced by truncated cube and truncated octahedron.[24]

Four-dimensional zonotopes

Seventeen is also the number of four-dimensional parallelotopes that are zonotopes. Another 34, or twice 17, are Minkowski sums of zonotopes with the 24-cell, itself the simplest parallelotope that is not a zonotope.[28]

Abstract algebra

Seventeen is the highest dimension for paracompact Vineberg polytopes with rank mirror facets, with the lowest belonging to the third.[29]

17 is a supersingular prime, because it divides the order of the Monster group.[30] If the Tits group is included as a non-strict group of Lie type, then there are seventeen total classes of Lie groups that are simultaneously finite and simple (see classification of finite simple groups). In base ten, (17, 71) form the seventh permutation class of permutable primes.[31]

Other notable properties

In science

The elementary particles in the Standard Model of physics

Physics

Seventeen is the number of elementary particles with unique names in the Standard Model of physics.[33]

Chemistry

Group 17 of the periodic table is called the halogens. The atomic number of chlorine is 17.

Biology

Some species of cicadas have a life cycle of 17 years (i.e. they are buried in the ground for 17 years between every mating season).

In religion

Other fields

Seventeen is:

  • The total number of syllables in a haiku (5 + 7 + 5).
  • The maximum number of strokes of a Chinese radical.

Music

Where Pythagoreans saw 17 in between 16 from its Epogdoon of 18 in distaste,[34] the ratio 18:17 was a popular approximation for the equal tempered semitone (12-tone) during the Renaissance.

Notes

References

  1. ^ "random numbers". catb.org/.
  2. ^ "The Power of 17". Cosmic Variance. Archived from the original on 2008-12-04. Retrieved 2010-06-14.
  3. ^ Sloane, N. J. A. (ed.). "Sequence A094133 (Leyland numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  4. ^ Sloane, N. J. A. (ed.). "Sequence A094133 (Leyland prime numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  5. ^ Sloane, N. J. A. (ed.). "Sequence A045575 (Leyland numbers of the second kind)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  6. ^ Sloane, N. J. A. (ed.). "Sequence A123206". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  7. ^ Sloane, N. J. A. (ed.). "Sequence A014556 (Euler's "Lucky" numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-11-25.
  8. ^ John H. Conway and Richard K. Guy, The Book of Numbers. New York: Copernicus (1996): 11. "Carl Friedrich Gauss (1777–1855) showed that two regular "heptadecagons" (17-sided polygons) could be constructed with ruler and compasses."
  9. ^ Pappas, Theoni, Mathematical Snippets, 2008, p. 42.
  10. ^ McGuire, Gary (2012). "There is no 16-clue sudoku: solving the sudoku minimum number of clues problem". arXiv:1201.0749 [cs.DS].
  11. ^ McGuire, Gary; Tugemann, Bastian; Civario, Gilles (2014). "There is no 16-clue sudoku: Solving the sudoku minimum number of clues problem via hitting set enumeration". Experimental Mathematics. 23 (2): 190–217. doi:10.1080/10586458.2013.870056. S2CID 8973439.
  12. ^ Sloane, N. J. A. (ed.). "Sequence A006227 (Number of n-dimensional space groups (including enantiomorphs))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-11-25.
  13. ^ Dallas, Elmslie William (1855), The Elements of Plane Practical Geometry, Etc, John W. Parker & Son, p. 134.
  14. ^ "Shield - a 3.7.42 tiling". Kevin Jardine's projects. Kevin Jardine. Retrieved 2022-03-07.
  15. ^ "Dancer - a 3.8.24 tiling". Kevin Jardine's projects. Kevin Jardine. Retrieved 2022-03-07.
  16. ^ "Art - a 3.9.18 tiling". Kevin Jardine's projects. Kevin Jardine. Retrieved 2022-03-07.
  17. ^ "Fighters - a 3.10.15 tiling". Kevin Jardine's projects. Kevin Jardine. Retrieved 2022-03-07.
  18. ^ "Compass - a 4.5.20 tiling". Kevin Jardine's projects. Kevin Jardine. Retrieved 2022-03-07.
  19. ^ "Broken roses - three 5.5.10 tilings". Kevin Jardine's projects. Kevin Jardine. Retrieved 2022-03-07.
  20. ^ "Pentagon-Decagon Packing". American Mathematical Society. AMS. Retrieved 2022-03-07.
  21. ^ Sloane, N. J. A. (ed.). "Sequence A003323 (Multicolor Ramsey numbers R(3,3,...,3), where there are n 3's.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-11-25.
  22. ^ Babbitt, Frank Cole (1936). Plutarch's Moralia. Vol. V. Loeb.
  23. ^ Sloane, N. J. A. (ed.). "Sequence A072895 (Least k for the Theodorus spiral to complete n revolutions)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2024-06-19.
  24. ^ a b Webb, Robert. "Enumeration of Stellations". www.software3d.com. Archived from the original on 2022-11-26. Retrieved 2022-11-25.
  25. ^ H. S. M. Coxeter; P. Du Val; H. T. Flather; J. F. Petrie (1982). The Fifty-Nine Icosahedra. New York: Springer. doi:10.1007/978-1-4613-8216-4. ISBN 978-1-4613-8216-4.
  26. ^ Sloane, N. J. A. (ed.). "Sequence A000040 (The prime numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2023-02-17.
  27. ^ Sloane, N. J. A. (ed.). "Sequence A007504 (Sum of the first n primes.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2023-02-17.
  28. ^ Senechal, Marjorie; Galiulin, R. V. (1984). "An introduction to the theory of figures: the geometry of E. S. Fedorov". Structural Topology (in English and French) (10): 5–22. hdl:2099/1195. MR 0768703.
  29. ^ Tumarkin, P.V. (May 2004). "Hyperbolic Coxeter N-Polytopes with n+2 Facets". Mathematical Notes. 75 (5/6): 848–854. arXiv:math/0301133. doi:10.1023/B:MATN.0000030993.74338.dd. Retrieved 18 March 2022.
  30. ^ Sloane, N. J. A. (ed.). "Sequence A002267 (The 15 supersingular primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-11-25.
  31. ^ Sloane, N. J. A. (ed.). "Sequence A258706 (Absolute primes: every permutation of digits is a prime. Only the smallest representative of each permutation class is shown.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2023-06-29.
  32. ^ Berlekamp, E. R.; Graham, R. L. (1970). "Irregularities in the distributions of finite sequences". Journal of Number Theory. 2 (2): 152–161. Bibcode:1970JNT.....2..152B. doi:10.1016/0022-314X(70)90015-6. MR 0269605.
  33. ^ Glenn Elert (2021). "The Standard Model". The Physics Hypertextbook.
  34. ^ Plutarch, Moralia (1936). Isis and Osiris (Part 3 of 5). Loeb Classical Library edition.

Read other articles:

Пение купальских песен. Малороссия, 1879 Купальские песни (Петровские песни, Купальские и Петровские песни) — восточно-славянский песенный цикл, сопровождавший обряды летнего Иванова дня. Народные названия этих песен: купальные, ивановские, петровские, купаленка, купала (...

 

Branch of biology that studies biological activities at molecular level Biochemical genetics redirects here. For the scientific journal, see Biochemical Genetics (journal). Molecular microbiology redirects here. For the scientific journal, see Molecular Microbiology (journal). Part of a series onBiologyScience of life Index Outline Glossary History (timeline) Key components Cell theory Ecosystem Evolution Phylogeny Properties of life Adaptation Energy processing Growth Order Regulation Reprod...

 

Опис Емблема Тигрів визволення Таміл-Еламу Джерело Автор зображення Ліцензія Це логотип (емблема) організації, товару, або заходу, що перебуває під захистом авторських прав та/або є товарним знаком. Використання зображень логотипів з низькою роздільною здатністю в укра...

مؤتمر القبعات السوداءالتاريخالتأسيس 1997[1] المؤسس جيف موس الإطارالنوع مؤتمرات أمان الكمبيوترمؤتمر هاكرمنظمة المقر الرئيسي سان فرانسيسكو[2] الولايات المتحدة على الخريطة التنظيمموقع الويب blackhat.com (الإنجليزية) رقم الهاتف +1-866-203-8081[2] تعديل - تعديل مصدري - تعديل و...

 

Adventure video game 1997 video gameMonty Python's The Meaning of LifeNorth American Box ArtDeveloper(s)7th LevelPublisher(s)7th Level, Panasonic Interactive MediaDirector(s)Steve MartinoProducer(s)Robert EzrinWriter(s)Bart JennettPlatform(s)WindowsReleaseDecember 1997[1]Genre(s)AdventureMode(s)Single player Monty Python's The Meaning of Life is an adventure game created by 7th Level in 1997 for Windows. The game is based on the 1983 film of the same name and was the third of three Mo...

 

Велика новорічна нічлатис. Lielā Jaungada nakts Жанр мелодрамаРежисер Ада НеретніецеСценарист Егонс ЛівсУ головних ролях Айварс СіліньшЕсмералда ЕрмалеЖанна КерімтаєваВаріс ВетраОператор Яніс МурнієксКомпозитор Ромуалдс КалсонсХудожник Василь МассКінокомпанія Ризька кін...

Magazine about the comic book medium Amazing HeroesAmazing Heroes #85 (December 15, 1985). Cover art by Alan Davis.EditorMichael Catron (founding editor)Kim Thompson (1981–1992)CategoriesComics criticism and newsFrequencyVaried between monthly and biweeklyPublisherFantagraphics BooksFirst issueJune 1981Final issueNumberJuly 1992204 (plus a number of special issues and annuals)CountryUnited StatesBased inStamford, Connecticut (1981–1984)Greater Los Angeles, California (1984–1989)Seattle,...

 

Israeli Paralympic competitor Shoshana SharabiPersonal informationBorn(1950-12-10)10 December 1950Died1 October 2018(2018-10-01) (aged 67)SportCountry IsraelSportParalympic athleticsWheelchair basketballWheelchair fencingDisabilityPolio Medal record Event 1st 2nd 3rd Paralympic Games 3 2 1 Representing  Israel Paralympic Games Wheelchair fencing 1968 Tel Aviv Novices foil[1] 1972 Heidelberg Foil team[2] 1972 Heidelberg Foil individual[3] Paralympic athle...

 

Ten artykuł dotyczy gminy wiejskiej Międzyrzec Podlaski. Zobacz też: Międzyrzec Podlaski miasto w powiecie bialskim. Międzyrzec Podlaski gmina wiejska Herb Flaga Państwo  Polska Województwo  lubelskie Powiat bialski TERC 0601102 Siedziba Międzyrzec Podlaski Wójt Krzysztof Adamowicz Powierzchnia 261,58 km² Populacja (30.06.2016)• liczba ludności 10 548[1] • gęstość 40,4 os./km² Nr kierunkowy 83 Tablice rejestracyjne LBI Adres urzędu:ul. Wa...

Długość 69 km Województwa śląskie,opolskie Zdjęcie Wiadukt w ciągu LK181 nad drogą 494 w Pankach. Przebieg trasy Legenda w użyciu   projekt, budowa, konieczność modernizacji węzeł drogowy typu WA węzeł drogowy typu WB skrzyżowanie rondo przejście granicznepunkt poboru opłat (PPO) stacja poboru opłat (SPO) most / wiadukt / estakada prom rzeka – brak przeprawy przejazd kolejowo-drogowy tunel parking z bufetem stacja paliw restauracja hotel / motel lub inne miejsce noc...

 

American college football season 2013 Tulsa Golden Hurricane footballConferenceConference USADivisionWest DivisionRecord3–9 (2–6 C-USA)Head coachBill Blankenship (3rd season)Offensive coordinatorGreg Peterson (3rd season)Defensive coordinatorBrent Guy (3rd season)Home stadiumSkelly Field at H. A. Chapman Stadium (capacity: 30,000)Seasons← 20122014 → 2013 Conference USA football standings vte Conf Overall Team   W   L     W ...

 

Indian actor (1903-1958) YakubBornYakub Khan(1904-04-03)3 April 1904Jabalpur, Madhya Pradesh, British IndiaDied24 August 1958(1958-08-24) (aged 54)Bombay, Maharashtra, IndiaOccupationActorYears active1924 – 1958SpouseLakshmiben Yakub Khan (3 April 1904 – 24 August 1958), known as Yakub,[1][2][3] was an Indian actor born into a Pathan family in Jabalpur, Madhya Pradesh, India.[4] He is best known for his comic and comic villainous roles.[5]...

Duke of Croatia from 879 to 892 BranimirDux Croatorum & Dux Sclavorum(Princeps, Comes, Dux, Dominus)Duke of CroatiaReign879 – c. 892PredecessorZdeslavSuccessorMuncimirBurialPossibly at Crkvina (modern day Biskupija, near Knin)[1]SpouseMariosa (Maruša)DynastyDomagojević (?)ReligionChristianity Branimir (Latin: Branimiro) was a ruler of Duchy of Croatia who reigned as duke (Croatian: knez) from 879 to c. 892. His country received papal recognition as a state from Pope John...

 

2003 filmPride and PrejudiceDirected byAndrew BlackScreenplay byAnne BlackJason FallerKatherine SwigertBased onPride and Prejudice1813 novelby Jane AustenProduced byJason FallerKynan GriffinStarringKam HeskinOrlando SealeBen GourleyLucila SoláHenry MaguireCarmen RasmusenCinematographyBianca ClineEdited byAlexander VanceMusic byBen CarsonDistributed byExcel Entertainment GroupRelease date 2003 (2003) Running time104 min.LanguageEnglishBudget$350,000Box office$377,271[1] Pride &am...

 

Smartphone manufactured by Huawei Huawei Nova 8Huawei Nova 8 5GManufacturerHuaweiCompatible networksNova 8: GSM / HSPA / LTENova 8 5G: GSM / CDMA / HSPA / LTE / 5GFirst releasedAugust 5, 2021; 2 years ago (2021-08-05)PredecessorHuawei Nova 7SuccessorHuawei Nova 9RelatedHuawei Nova 8 ProHuawei Nova 8iTypeSmartphoneForm factorSlateDimensions160.1 mm (6.30 in) H 74.1 mm (2.92 in) W 7.6 mm (0.30 in) DMass169 g (6.0 oz)Operating systemAndro...

American actor and singer (1935–2004) Jerry OrbachOrbach in a 1965 publicity photoBornJerome Bernard Orbach(1935-10-20)October 20, 1935New York City, U.S.DiedDecember 28, 2004(2004-12-28) (aged 69)New York City, U.S.Resting placeTrinity Church Cemetery and Mausoleum, ManhattanOccupation(s)Actor, singerYears active1955–2004Spouses Marta Curro ​ ​(m. 1958; div. 1975)​ Elaine Cancilla ​ ​(m. 1979)​Ch...

 

City in New York, United StatesBuffaloCityBuffalo skylineThe Peace BridgeKeyBank CenterBuffalo City HallNFTA Metro RailHayes Hall, University at BuffaloBuffalo AKG Art Museum in Delaware ParkBuffalo Central Terminal FlagSealEtymology: Named after the nearby Buffalo Creek, which was named by French and Moravian explorers[1][2][3]Nicknames: Queen City, City of Good Neighbors, City of No Illusions, Nickel City, Queen City of the Lakes, City of Light, City of Trees ...

 

Island of the Savage Islands in Madeira, Portugal Selvagem Pequena IslandCoast line of Selvagem PequenaGeographyLocationAtlantic OceanCoordinates30°02′03″N 16°01′37″W / 30.03417°N 16.02694°W / 30.03417; -16.02694ArchipelagoSavage IslandsArea0.3 km2 (0.12 sq mi)Highest elevation49 m (161 ft)Highest pointPico do VeadoAdministrationPortugalAutonomous RegionMadeira IslandsDemographicsPopulationuninhabited Selvagem Pequena Isla...

TV Star Beschreibung Schweizer Programmzeitschrift Sprache Deutsch Verlag Ringier Axel Springer Media (Schweiz) Erscheinungsweise wöchentlich Verkaufte Auflage 66'040 (Vj. 70'490) Exemplare (WEMF-Auflagebulletin 2018[1]) Verbreitete Auflage 66'040 (Vj. 70'490) Exemplare (WEMF-Auflagebulletin 2018) Reichweite 0,149 (Vj. 0,165) Mio. Leser (WEMF MACH Basic 2018-II) Chefredaktor Gion Stecher Geschäftsführer Jörg Tobuschat Weblink tvstar.ch TV Star (Eigenschreibweise TVstar) i...

 

Castle in Flawinne, Belgium 50°27′59″N 4°48′03″E / 50.46641°N 4.800925°E / 50.46641; 4.800925 Château de Flawinne in Flawinne The château de Flawinne or Castle of Flawinne is in the Belgian village of Flawinne on the outskirts of Namur, Wallonia.[1] Notes ^ European Historic Houses Association team 2013, pp. 24–25. References European Historic Houses Association team (26–29 September 2013), General Assembly European Historic Houses Associ...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!